ST-2900 0S-9

ST-2900 0S-9 CONVERSION PACKAGE

User's Manual

Copyright 1984 by Sardis Technologies
A11 rights reserved

Sardis Technologies
2261 East 11th Avenue
Vancouver, B.C.
Canada V5N 177



ST-2900 0S-9
CREDITS

Special thanks go to John C., Will W., and Greg M. -- many of the
improvements in this release are due to their suggestions.

TRADEMARKS

"Radio Shack" is a trademark of Tandy Corp.

"0S-9" is a trademark of Microware and Motorola.

"UNIX" is a trademark of AT&T Bell Laboratories

"FLEX" is a trademark of Technical Systems Consultants (TSC)
"Screditor III" is a trademark of Alford and Associates
"CP/M" is a trademark of Digital Research Inc.

"MS-DOS" is a trademark of Microsoft Corp.

COPYRIGHT INFORMATION

The entire contents of this manual and all information on the supplied
diskette(s) are copyrighted by Sardis Technologies. It has been sold to you
on a "single end user" basis. It is permissible to make copies of this manual
and the disk data only for use within a single site. However, if it becomes
necessary to run the programs on more than one computer simultaneously,
additional copies or a multi-copy license must be purchased from the
supplier.

DISCLAIMER

Although much effort has been made to ensure the accuracy of the
software and documentation, Sardis Technologies disclaim any and all
liability for consequential damages, econamic loss, or any other injury
arising from or on account of the use of, possession of, defect in, or
failure of the supplied material.

This manual last revised August 5, 1985.



ST-2900 0S-9
0.0 Table of Contents

e e e o o - o — e e S e S S S S e S S S N E S S S S M M S S e S S S e e M T e e S e
S Attt e e R

+ 1.0 Introduction 4
2.0 What you need to run 0S-9 on the ST-2900 5
3.0 Before you get started 6
4.0 Booting up 0S-9 with the Conversion Boot disk 8
5.0 Backing up the Conversion Boot disk 9
6.0 Backing up the CoCo 0S-9 System Master disk 10
7.0 Creating a new bootable system disk (after first boot) 11
8.0 Creating a new bootable system disk (after other boots) 13
9.0 Booting from a configured system disk 14
10.0 New utility conmands and drivers 14

10.1  Clock 14
10.2 po,D1,D2,D3,SDO,SD1,SD2,SD3,MDO,MD1 16
10.3  Dspeed v 17
10.4  DUART 18
10.5 Kernlfix 20
10.6 Kernlsave 21
10.7  Modfix 21
10.8 SDISK29 23
16.9  Sformat 26
10.10 VIA/PL 28

11.0 Appendix A - Modifying disk driver parameters 29
12.0 Appendix B - CoCo 0S-9 modules replaced 31
13.0 Appendix C - Contents of the ST-2900 Conversion disk 31
14.0 Appendix D - Typical memory map 31
15.0 Appendix E - Changes to the Radio Shack CoCo 0S-9 manuals 32
16.0 Appendix F - Tuning 0S-9, and other tips 33

17.0 Appendix G - Additional Sources of software and information 36
18.0 Appendix H - Additional information for advanced programmers 38

19.0 I - Using PC-XFER 40

Appendix



ST-2900 0S-9

1.0 Introduction

o o . T T o T T o T o o oo T o e T o o o o e = e S e e S S S M S e e . . S T e S S S A S m e W e e W v e o S o S
e S 2 2 2 - 2 4 2 2 2 3 2

Welcome to the exciting world of 0S-9! This sophisticated operating systein
offers many of the features of UNIX, yet is relatively simple to use and runs
on very economical hardware such as the ST-2900.

The ST-2900 0S-9 Conversion Package lets you easily create an 0S-9 system
disk, fully configured for the ST-2900, directly bootable by ST-MON. The
whole process only takes a few minutes, with the Conversion package doing
most of the work for you.

Why, you might ask, does Sardis Technologies offer a conversion package to be
used with another manufacturer's version of 0S-9, instead of selling a
canplete, pre-configured implementation? To save you a bundle of money!!

The Radio Shack Color Computer (CoCo) version of 0S-9 is priced so
attractively, that even after adding the cost of the ST-2900 0S-9 Conversion

Package, 0S-9 on the ST-2900 costs you less than half of Microware's
suggested list price of ($US) $250.

No programming is involved -- merely follow the simple instructions in the
next several pages. The task of replacing the CoCo "device drivers" with new
ST-2900 drivers is done automatically by the Conversion Package.

Many of the limitations of 0S-9 on the CoCo have been eliminated by means of
the new ST-2900 device drivers in conjunction with the ST-2900's DUART and
different disk controller design.

0S-9 on the ST-2900 system gives you more free memory for user programs than
many other 0S-9 Level I systems. Memory is especially tight on Radio Shack
CoCo's with 24x51 high resolution dis?lays. But running MFREE on the

ST-2900 (immediately after booting up) typically indicates 172 pages (43K) of

_contiguous free memory.

Another feature of 0S-9 on the ST-2900 is its ability to read and write disks
in a variety of formats:

a) standard 0S-9, single or double density

b) CoCo 0S-9

c) MIZAR 0S-9/68K

d) FLEX (using SouthEast Media's 0O-F package)

e) MS-DUS (using D.P. Johnson's PC-XFER utilities)

f) Radio Shack CoCo Disk BASIC (using D.P. Johnson's PC-XFER utilities)



ST-2900 0S-9
2.0 What you need to run 0S-9 on the ST-2900

3t 3t P it 1t Tttt Tt 1ttt 1 T i sttt R

'2.1) The "ST-2900 0S-9 Conversion Package" from Sardis Technologies. A
diskette labelled "ST-2900 0S-9 Conversion Boot Disk" is included in this

package, and will be referred to as the "Conversion/Boot" disk throughout
this manual. Appendix C 1ists the contents of the disk.

2.2) A copy of 0S-9 Level I, including a system disk and manuals. Your local
Radio Shack Computer Center or other Radio Shack stores (found in 80
countries worldwide) are the best source. The versions of 0S-9 that have
so far been verified to be compatible with the ST-2900 Conversion package
are:

a) Radio Shack Color Computer 0S-9 Version 01.00.00
b) Radio Shack Color Computer 0S-9 Version 01.01.00

Some other versions might also run without changes. If your version of
0S-9 has ?rob1ems running on the ST-2900 system, contact us and we will
try to help (but no guarantees). The important points are that the 0S-9
disk used in the booting process must be in CoCo format, single-sided, and
have the 0S-9 kernel (0S9, 0S9P2, INIT, BOOT) on track 34, sectors 1-15.

The ST-2900 0S-9 Conversion package supplies its own console, printer,
clock, and disk driver routines, so it doesn't matter if the 0S-9 version
you choose didn't originally support the disk configuration you need.

The CoCo 0S-9 package includes a disk labelled "Radio Shack Color Computer
0S-9 System Master" which will be referred to as the "CoCo/System" disk
throughout this manual.

2.3) ST-MON version 2.04, or later, installed on the CPU board. The number
of data bits (7 or 8) that serial port A is set to must match that of your
temminal, otherwise 0S-9 will either hang up or you will get Tots of
"ERROR #244" messages. Refer to the ST-MON manual for more details.

2.4) At least one floppy disk drive. Although 0S-9 will run on a one drive
system, a two drive configuration is recommended, with a maximum of four
drives allowed on the ST-2900. Running commands such as BACKUP is awkward
and slow on a one drive system.

Disk drives may be single or double sided, 5 1/4" or 3 1/2", 35 or 40 or
80 track, 48 or 96 or 135 tpi, in any mix. NOTE -- because both the
Conversion/Boot and CoCo/System disks are supplied on 5 1/4" media, you
must have at least one 5 1/4" drive connected, even if only temporarily.

The system will run fine with only 3 1/2" drives, once a configured 3 1/2"
bootable system disk has been created.

2.5) The ST-2900 CPU board must have 64K RAY installed, and crystals Yl and
Y2 must be 3.6864 MHz and 16 MHz, respectively. The ST-2900 FDC board must

be connected to the CPU board. The 6522 VIA does not need to be installed
on the FDC board unless you will be using the VIA device driver.



ST-2900 0S-9
3.0 Before you get started

= B e e s 2 i st 2 i -t 2ttt - 2 2 2 2 2

3.1) Before attempting to use the ST-2900 0S-9 Conversion Package you should
read the red "0S-9 COMMANDS" manual supplied with the Radio Shack version
of 0S-9 to familiarize yourself with the terminology and basic features of
0S-9. ALSO READ THIS ENTIRE ST-2900 MANUAL THROUGH ONCE OR TWICE BEFORE
BEGINNING ANY OF THE PROCEDURES GIVEN.

The next 6 or 7 pages contain the detailed instructions on booting 0S-9 on
the ST-2900, making backups of the original Sardis Technologies and Radio
Shack disks, and creating a configured bootable system disk. Here is a
brief overview of those instructions:
a) use ST-MON to set flags to indicated the drive number and track
density of the boot drive, if these are different from the defaults
b) use ST-MON's "D OC" command to load the conversion package fram disk
c) use the program loaded in (b) to load the Radio Shack CoCo version of
the 0S-9 operating system fran disk
d) modify the disk drive descriptors with 05S-9's DEBUG command
e) modify the terminal and printer device descriptors with 05-9's XMODE
command
f) adjust the trimpots on the FDC board, using the ST-2900 DSPEED program
g) use the SFORMAT command to prepare several disks to save the results
of steps a-e
h) use 0S-9's BACKUP command to make working copies of the originals of
the Radio Shack 0S-9 and Sardis Technologies' conversion disks
i) use the ST-2900 KERNLSAVE and KERNLFIX commands and 0S-9's SAVE and
0S9GEN commands to make a bootable system disk configured for your
system

Note that until step (i) has been done, all the modifications made in
steps d-e are only in memory and so are extremely volatile. Any error
may require the whole process to be repeated, so be very careful. We
strongly urge that you follow the instructions in sections 4.0 through
7.9 in the sequence that they are presented.

3.2) In this manual, and throughout the Radio Shack 0S-9 manuals, you will
see commands and module names appearing in lower case, upper case, Or even
a mixture of lower and upper case. 0S-9 command lines are case insensitive
-- “ABC", "abc", and "Abc" are all considered to be the same name.

3.3) NOTE - although this package allows you to read, write, and format both
CoCo and standard 0S-9 disk formats with equal ease, you will probably
want to use the CoCo format for most of your disks, and use the standard
format only when exchanging disks with other people. When comparing 40
track double-sided, double-density disks, the CoCo format stores almost
42K bytes more data per disk. Also, as supplied, this package uses /DO as
the device name for CoCo format disks in drive 0. Some software packages
(such as Screditor III) must be run fram a drive named /DO, not /SDO,
unless you patch them. And the "CHD" and "CHX CMDS" commands automatically
issued by SysGo at boot time will not successfully execute if you boot up
from a standard 0S-9 format disk, unless you either rename the “SDO"

- device descriptor to "D0", or modify the "INIT" module to point to SDO
instead of DO.



S$T-2900 0S-9

3.4) REMEMBER - it can be very dangerous to your data to change disks in the
middle of a session (ie. if you are not at the 0S-9 command level, seeing
the "0S9:" prompt), especially if any files are open for update or write.
Of course, due to the multi-user/multi-tasking (mu/mt) capabilities of
0S-9, even seeing the "0S9:" prompt on your terminal doesn't guarantee it
is safe to change disks. If you use the mu/mt features by specifying an
"&" in your command lines, or by having two users simultaneously logged
onto the system, you should acquire the habit of running the "PROCS E"
command before changing a disk, to see if any processes are running that
may be using the disk.

Also, as a general rule, whenever you change disks that contained either
the current data directory or current execution directory (as set by the
CHD and CHX commands), you should execute the CHD and/or CHX commands
after the new disk is inserted. Failure to do so will result in a lot of
"ERROR #214 - no pemnission" or "ERROR #216 - path name not found"
messages, or any number of unpredictable results, most just a nuisance, a

few downright disasterous.



ST-2900 0S-9
4.0 Booting Up 0S-9 With The Conversion Boot Disk (or a backup copy of it)

T T T o T T T o T T o T T T e e e e o e e E i o e e e A e T S e - S - e e S S - S S S S S N e e

B sttt - T T -ttt T Tt ¥

4.1) After Powering up or pressing the system reset switch, respond to
ST-MON's "“CW?" prampt with "C", after which you should get the ST-MON
signon message and a "=" prompt.

4.2) If you have a 5 1/4" disk drive (either 48 or 96 tpi) connected as
drive #0, you will use it as the drive to boot from, so skip the rest of
this step and continue at step 4.3. If drive #0 is a 3 1/2" unit, but you
will boot from backup copies (on 3 1/2" disks) of the Conversion/Boot and
CoCo/System disks, you should also use drive #0 as the boot drive, skip
the rest of this step, and continue at step 4.3.

If neither of the above describes your situation, you need to have a

5 1/4" drive (either 48 or 96 tpi) connected, even if only temporarily, as
drive #1, 2 or 3 because the original Conversion/Boot and CoCo/Systen
disks are only supplied on 5 1/4" media. The system now needs to be told
to boot fram the E 1/4" drive, and not fram the 3 1/2" unit that is drive
#0. Use ST-MON's "M" command to set memory location BDRIVE ($FEAl) to the
drive number of the 5 1/4" drive you wish to boot fram (01, 02, 03).

4.3) If the Conversion/Boot and CoCo/System disks you will be booting from
are recorded at the same tracks per inch as that of the boot drive, skip
the rest of this step. To tell ST-MON to “double-step" a 96 tpi boot drive
to read 48 tpi disks, use ST-MON's "M" command to set memory location
DBLSTP ($FEA2) to any non-zero value (such as $FF).

4.4) Double check to make sure the disk labelled "ST-2900 0S-9 Conversion
Boot Disk" (use the backup copy, if you already have one) is write
protected, then insert it into the boot drive. Type "D 0OC". If you get a
"BT ERR" or other error messages, press the system reset switch, then
start again at step 4.1.

4.5) When pranpted to do so, remove the Conversion/Boot disk, then insert
the disk labelled "Radio Shack Color Computer 0S-9 System Master" (use the
backup copy, if you already have one) into the boot drive (first making
absolutely sure the disk is write protected) and press the [Return] key.

4.6) The system will now take half a minute, or so, to complete the boot
process. A series of asterisks will be displayed to let you know the
system is working and hasn't "died".

a) If you used drive #0 as the boot drive, you will eventually see the
“Time?" prampt. Key in the date and time (refer to the description of
the SETIME command in the Radio Shack "0S-9 Commands" manual), press
the [Return] key, and you will be greeted with the "0S9:" prampt.

b) If you used a different drive as the boot drive, the system will at one
point attempt to access drive #0. Ten seconds to one minute later it
will give up, then display the "0S9:" prompt. In the meantime, the
system was forced to skip several important steps, so you now need to
gex the following three commands, where "/Dn" is the name of the boot

rive:
CHX /Dn/CMDS
CHD /Dn
SETIME



ST-2900 0S-9

D

.7) Follow the instructions in Appendix A (but omit step 11.5 for now) to
change the stepping rates and other parameters to match your current disk
drive configuration. DO NOT BYPASS THIS STEP.

4.8) At this point you should use the XMODE cammand (refer to the Radio

Shack "0S-9 Commands" manual) to set the baud rates and other attributes
of the device descriptors for the printer ("P") and modem or second
terminal ("T1") to match your requirements. Also refer to the write-up on

the "DUART" device driver in section 10.4.

S

.9) The DSPEED conmand (described in section 10.3) must be run to help you
adjust the two trimpots on the FDC board. No test instruments are required
-- only a screwdriver. It is especially important to run the "D" and “S"
sub-commands and make the appropriate adjustments BEFORE you go on to any
other step that writes to a disk.

4.10) Before you do much else, follow the instructions in sections 5.0 to
7.0 to create backups of the original Sardis Technologies and Radio Shack
distribution disks and create a directly bootable 0S-9 system disk custom
tailored to your system.

5.0 Backing Up The ST-2900 0S-9 Conversion Boot Disk

2Tt 3t T T i - 1 1 3 1t 2t 2 e e e

5.1) If you haven't already carefully studied the SFORMAT command (explained
in section 10.9 of this manual), and the LOAD, MDIR and BACKUP commands
(explained in the Radio Shack "0S-9 Commands" manual), do so first.

5.2) With the CoCo/System disk still in the boot drive, type:
LOAD LOAD

LOAD MDIR
LOAD BACKUP

(5]

.3) Use the MDIR command to see if module "Sformat" is in memory. If yes,
skip the rest of this step and go on to step 5.4. If not, put the
Conversion/Boot disk into the boot drive and type (where "/Dn" is the name
of the boot drive):

LOAD /Dn/CMDS/SFORMAT
5.4) Insert a blank disk into drive 0 and type:
SFORMAT /DO 1 S '35°

If SFORMAT indicates other than 630 "good sectors", you should format the
disk again, or format another disk, until you get one with 630 sectors.

This is because the BACKUP command requires that both the source and
destination disks have identical formats, with no defective sectors.



ST-2900 0S-9

5.5) Next use the BACKUP command to copy the original Conversion/Boot disk
to the newly formatted disk in drive 0. Here are two examples:
a) if you have only one disk drive, type:
BACKUP /DO #20K
b) if you have two disk drives, put the original Conversion/Boot disk in

drive #1, with the newly formatted disk still in drive #0, and type:
BACKUP /D1 /DO #20K A

5.6) You now have a "clone" of the original Conversion/Boot disk that will
be used in a few minutes. Store the original Conversion/Boot disk in a
safe place, and use only the copy fran now on. If your working copy
someday has coffee spilt on it or is chewed up by your dog, you'll still
have the original to go back to.

6.0 Backing Up The Radio Shack CoCo 0S-9 System Master Disk

S D e o o o o o o o e o e e e e e o e i e o e . T e A P N M A S R S N N R m E A E Em R S T TSI ST
R 1 L i e ]

6.1) Use the MDIR and LOAD commands to ensure that modules "Sformat" and
"Backup" are in memory.

6.2) Insert a blank disk into drive 0 and type:
SFORMAT /DO 1 S '35

If SFORMAT indicates other than 630 “good sectors", you should format the
disk again, or format another disk, until you get one with 630 sectors.
This is because the BACKUP command requires that both the source and
destination disks have identical formats, with no defective sectors.

6.3) Use the 0S-9 "Backup" command (described in the red "0S-9 Commands"
manual) to back up the entire CoCo/System disk to the disk formatted
in step 6.2. Here are two examples:

a) if you have only one disk drive, type:
BACKUP /DO #20K
b) if you have two disk drives, put the original CoCo/System disk in

drive #1, with the newly formatted disk still in drive #0, and type:
BACKUP /D1 /DO #2(K

6.4) Store the original CoCo/System disk in a safe place and use only this
backup copy from now on.

- 10 -



ST-2900 0S-9

7.0 Creating A New Bootable ST-2900 0S-9 System Disk (after booting from the
============--SSS===Ss=====ZZZSSSSSTSSZZ=SSSSSSSSSSSS==ES Convers‘ion/BQot di Sk)

'7.1) Using the 0S-9 "MDIR" and "LOAD" commands as necessary, ensure that
modules "Load", "Mdir", "Del", "Save", "0S9gen", "Rename", "Unlink",
"Tmode", "Makdir", "Copy", "Dsave" (from the CoCo/System disk) are in
memory. For example (where "/Dn" is the name of the boot drive, which
has the CoCo/System disk in it):

CHX /Dn/CHMDS
LOAD LOAD
LOAD DEL
LOAD OS9GEN
(etc.)

'7.2) Use the MDIR command to see if modules "Sformat", "Kernlfix",
"Kernlsave" are already in memory. If not, load them from the CMDS
directory on the Conversion/Boot disk.

7.3) Insert a blank disk into drive 0 and format it as a CoCo 0S-9 format
disk (ie., using /D0), to whatever capacity is desired and appropriate.
Take note of the comments re minimum acceptable disk capacity at the end
of the write-up on the SFORMAT utility in section 10.9. You will nommally
key:

SFORMAT /DO

This uses the default values you had set in the "DO" device descriptor
after you booted up from the Conversion/Boot disk.

7.4) Now you will create a file called "0S9%Kernel" that contains (surprise!)
the 0S-9 kernel (modules 0S9, 0S9p2, Init, Boot). Because you need to
include the $FEXX data area, as well as a small data area that is
sandwiched between (but outside of) two of the modules, you can't use
0S-9's SAVE command. A special command has been supplied to do the job.
Just type:

KERNLSAVE /DO

7.5) To create a new, configured "0S9Boot" file, use the 0S9GEN cammand. The
reason for not using COBBLER at this time is that you will probably not
need all the modules supplied in the initial boot file. For example, if
you only have two disk drives you will not need the D2, D3, Sb2, SD3
descriptors. Other modules you may or may not want to anit are SDO, SDI,
MDO, MD1, VIA, PL, P, Tl. These are all described several pages below. By
omitting unneeded or infrequently used modules fram the new boot file you
will gain more free user memory. Just in case you will need those omitted
modules some other time, save each of them into a separate file so they
can be LOAUed and UNLINKed as required in the future. The modules to be
included in the new boot file are temporarily saved into files (eg. TBWP1,
TEMP2, TEMP3). For example, to create a new boot file that omits D2, D3,
SD2, SD3, MDO, MD1, T1 type the following sequence of commands (“"[escape]”
means press the "escape" key on your keyboard):

- 11 -



ST-2900 0S-9

SAVE /DO/TEMP1 SDISK29 DO D1 SDO SD1
SAVE /DO/TEMP2 CLOCK DUART VIA TERM P PL
SAVE /DO/TEMP3 IOMAN RBF SCF SYSGO SHELL PIPEMAN PIPER PIPE
0S9GEN /DO

/DO/TEMP1

/DO/TEMP2

/DO/TEMP3

[escape] ‘
DEL /DO/TEMP1 /DO/TEMP2 /DO/TEMP3
KERNLFIX /DO
SAVE /D0/MDO MDO
SAVE /DO/MD1 MD1
SAVE /D0/D2 D2
SAVE /D0O/D3 D3
SAVE /D0/SD2 SD2
SAVE /D0/SD3 SD3
SAVE /DO/T1 T1

The KERNLFIX command removes the kernel that the Radio Shack version of .
0S9GEN writes to track 34 (sectors 1-15), as we are using the "0S9Kernel
file instead.

7.6) Use MAKDIR and COPY, or DSAVE, to copy over the desired files from the
Conversion/Boot and CoCo/System disks to the new disk. For example, to
copy all files in the CoCo/System CMDS directory to the new disk, type the
following sequence (with the CoCo/System disk in drive 1, and the new disk
in drive 0). With a large directory, this process will take several
minutes and give your disk drives a thorough workout!

CHL /D1/CMDS

DSAVE -S20 /D1 >/DO/makecopy #2(K
MAKDIR /DO/CMDS

CHD /DO/CMDS

/b0/makecopy

DEL /DO/makecopy

Repeat as necessary for all desired directories and files. As an absolute
minimum the new disk needs the "startup" file and a "CMDS" directory
containing the "Setime" command.

If you wish to copy ALL files on one disk to the new disk, instead of

copying one directory at a time you can do the whole disk in one fell
swoop by keying (with the new disk still in drive 0):

CHD /D1

DSAVE -S20 /D1 >/D0/makecopy #20K
CHD /DO

/D0/makecopy -X

DEL /DO/makecopy

The "-X" is needed to keep the procedure file frum aborting after you
receive the "ERROR #218 - file already exists" message when an 0S9Boot or
- 0S%Kernel file is present on both disks.

- 12 -



$T-2900 0S-9

7.7) If the CoCo's disk format command was copied to the CMDS directory on
the new disk, delete "FORMAT". It won't work on the ST-2900, and the new

“Sformat" command replaces it.

7.8) Congratulations! You now have a fully configured boot disk that will
boot directly via ST-MON's "D OC" command. And you saved yourself ($US)
$131 of f the suggested list price of 0S-9 (tax free!!) Not bad for a few
minutes worth of watching the computer do most of the work.

7.9) Whenever you boot up fram this new disk, follow the instructions in
section 9.0 entitled "Booting From A Configured ST-2900 System Disk".

8.0 Creating A New Bootable ST-2900 0S-9 System Disk (after booting fram a
I It ittt ittt ittt ittt 1ttt ittt Conf‘igur‘ed ST-ZQOO disk)

8.1) If you want an identical copy of the system disk, just use the SFORMAT
and BACKUP commands. If the new system disk is to be different from the
existing disk, follow the next steps. Note the comment in the SFORMAT
documentation regarding minimum allowable disk capacity.

8.2) Since there are so many possible variations on what you want on a new
system disk, and why you want to make it different, we can't give you a
blow-by-blow description of what to do -- only general hints. Appendix F

should be studied carefully before continuing. The "Bootsplit" program in
the 0S-9 User Group public domain library can also camne in handy.

8.3) Immediately after using SFORMAT you should always run KERNLSAVE.

8.4) The 0S9GEN or COBBLER cammands are run next, and should be followed by
the KERNLFIX.command.

8.5) A CMDS directory must be created, and it must contain the SETIME
comiand. The "Startup" file should be copied over, or a new one created.
It should at least contain the "SETIME </TERM" command 1ine.

8.6) Use COPY and/or DSAVE to copy over any other desired files to the new
disk. For example, to copy all files in the DEFS directory fram D1 to DO:

CHD /D1/DEFS

DSAVE -S32 /D1 >/D0/makecopy #32K
MAKDIR /DO/DEFS

CHD /DO/DEFS

/D0/makecopy

DEL /DO/makecopy

If modules PIPEMAN, PIPER, PIPE are in memory, the following steps will
perform the same function, but without the "makecopy" file:

MAKDIR /DO/DEFS ; CHD /D1/DEFS
DSAVE --S24 /D1 ! (CHD /DO/DEFS)

- 13 -



ST-2900 0S-9

9.0 Booting From a Configured ST-2900 System Disk

- T T T T T o o o o o o o o o o o e o e e e e = o o — — — = > =e  E S S

9.1) After powering up or pressing the system reset switch you should be in
the ST-MON monitor, with the "=" pramnpt waiting. ST-MON's BDRIVE and

DBLSTP locations should be left at their default settings (drive #0, no
double stepping). :

9.2) Insert the configured ST-2900 System disk you created previously, into
drive 0 and type "D 0OC" or "D 0S" (for CoCo or standard format disks,
respectively).

9.3) After 15 seconds or so, you should see the "Time?" prompt. Key in the
date and time and you will get the "0S9:" prompt. If you used the "D 0S"
canmand, but have neither changed the INIT module to point to /SDO, nor
renamed the /SDO descriptor as /DO, the system will have bypassed the
“startup" file, and not given you the "Time?" prampt. In this case you
should key:

CHX /SDO/CMDS
CHD /SDO
STARTUP

10.0 New Utility Commands and other modules

e e P S S H LR e e s

The next few pages describe the utility commands and modules included on the
ST-2900 0S-9 Conversion Boot disk.

_Only "Modfix" can be used on any 0S-9 Level I system. The other drivers and
utilities in this package will only work on the ST-2900 as they rely on the
unique capabilities and configuration of that hardware.

10.1 CLOCK CLOCK

B 2 B PP L R

The "CLOCK" driver implements a real-time clock in software. It uses the
DUART's 16 bit counter/timer as a source of interrupts, with 10 "ticks" per
second.

Although the floppy disk controller on the ST-2900 FDC board uses progranmed

1/0 (PI10) instead of direct memory access (DMA), the disk driver routines
have been written in such a way that nommal disk reads and writes should not

affect the clock's time-keeping ability.

Some read/write errors, as well as running the SFORMAT or DSPEED commands
can result in the clock running slightly slow or fast. Any user program that

masks IRQ interrupts for more than 99 milliseconds at a time will also affect
the clock.

- 14 -



ST-2900 0S-9

If the crystal oscillator in the 2681 DUART is slightly off from its nominal
3.6864 MHz rate, you may want to modify the clock's time constant. Here is a
‘sample session (where "[Return]" means press the carriage return key):

0S9: DEBUG
Interactive Debugger
DB: .FF26
FF26 FF
DB: =2D <- value depends on correction needed
ERROR #010
DB: Egg%uigj
FF27 F3
DB: =04 <- value depends on correction needed
ERROR #010
FF27 F3
DB: Q

Ignore the "ERROR #010 - memory location did not change to desired new value"
message above -- it occurred because we were writing into write-only
registers in the DUART. Corrections can only be made in increments of 7.5
seconds per day. The hexadecimal value $2D04 ($2D00 + 4) used above will
correct a clock running too fast by 30 seconds per day (+4 * 7.5 = +30);
$2CFE ($2D00 - 2) is for a clock slow by 15 seconds per day (-2 * 7.5 = -15);
$2D00 is the default value.

To avoid having to key in the above sequence every time you re-boot, you can
change the time constant in the CLOCK module itself. Use the following
example as a guide. Some of the values displayed may be different on your
system, but the ". .+13" debug command should be keyed without change.

0S9: DEBUG
DB: L CLOCK
D1E4 87
DB: . .#13
DIF7 2D
DB: =2D - <~ value depends on correction needed
D1F8 00
DB: =04 <- value depends on correction needed
D1F9 15
DB: Q
0S9:MODFIX CLOCK
MODULE ADDRESS = D1E4
NAME = Clock
SIZE = OOFE
OK TO CONTINUE (Y/N)? - Y
MOD TYP / LANG TYP = C1
ATTRIB / REV = 81
HDR PARITY = 06
MODULE CRC = CE2043

UPDATED 0.K.

The modified CLOCK module now needs to be put into a new 0$9BOOT file via the
OS9GEN or COBBLER commands.

- 15 -



ST-2900 0S-9
10.2 DO, D1, D2, D3, SDO, SD1, SD2, SD3, MDO, MD1 Device Descriptors

T T e o o o e e o e e e T e T I I T S T T S R I T e S e S T e R e T S S R R S S R S M e T T i e s
st i -+ it 2ttt P 2 2 R e e 2

These device descriptors (source code supplied) replace the DO to D3 modules
supplied with the CoCo version of 0S-9. Under the SDISK29 driver (see section
10.8) there are two or three device names for each physical disk unit, ie.
drive 0 is referred to by /DO or /SDO or /MDO, depending on the format of the
diskette in that drive. The first four, DO to D3 are referenced whenever the
disk in the drive is a CoCo 0S-9 format disk. The next four, SDO to SU3 are
referenced whenever the disk in the drive is-a standard 0S-9 format disk. The
last two, MDO and MD1, are only used when the disk in the drive is a MIZAR
format d1sk (the MIZAR is a 68000 VMEbus system that runs 0S-9/68K).

If you try to access a diskette via a device name that is for a different
format, you will usually get a SEEK ERROR. However, it is possible to get
other unpredictable results, perhaps even destroying data on the disk. That
}s_why you should develop the habit of labelling each disk with its current
omat.

The differences among these three formats can be summarized as follows:

a) CoCo 0S-9 format disks are written entirely in double-density with 18
sectors per track (each side). The sectors are numbered 1-18, regardless
of which side they are on. For maximum compatibility with "stock" Radio
Shack CoCo's, disks should pe limited to 5 1/4", one side, 35 tracks, 48
tpi. Otherwise disks can be any combination of 3 1/2" or 5 1/4", single or
double sided, 48 or 96 tpi (or whatever the 3 1/2" drives use), and any
number of tracks from 1 to 245.

b) Standard 0S-9 format disks always have 10 single-density sectors on side O
of track O, with all other sides and tracks containing either 10 single
density or 16 double density sectors per track (each side). Sectors are
nunbered 0-9 or 0-15, regardless of which side they are on. For maximum
canpatibility with other systems, to avoid such problems as GIMIX vs SWTPc
side flags, disks should be 1imited to single sided, single density, 48
tp1, 5 1/4", 35 tracks. Otherwise disks can be any cunb1nat1on of 3 1/2"

51/4", s1ngle or double sided, single or double density, 48 or 96 tpi
(or whatever the 3 1/2" drives use), and any number of tracks fran 1 to
245. A slight variation on the standard that uses 18 sectors (numbered
0-17) per track in double density can also be read or written, but not
formatted by the ST-2900.

c) MIZAR 0S-9/68K format disks are written entirely in double-density, with

16 sectors per track (each side). The sectors are numbered 0-15,
regardless of which side they are on.

- 16 -



ST-2900 0S-9
10.3 DSPEED DSPEED

R s i i ittt ittt ittt ittt it

o VERY IMPORTANT -- You must NEVER run DSPEED while any other program is
active on the system. Also, whenever DSPEED is run,
0S-9's real-time c]ock may lose several seconds.

The DSPEED cammand lets you check 3 disk related values -- motor-on hold
time, delay from "motor-on" to "ready" signal, and disk drive rotational
speed -- so you can detemine if any adjustments are necessary.

Its syntax is:
DSPEED
When called, it pranpts "ENTER COMMAND - ". Four sub-commands are available:

a) "H" - starts the drive motors so you can manually (with a wristwatch) time
how Tong the motors remain on before they turn off. You will need to turn
off any noisy printers or fans so you can hear when the motors start and
stop. The motors must be off when you call this command, otherwise you
will get the "*NOT READY" message. Trimpot R2 on the FDC board sets this
value fram approx. 2 to 15 seconds. This value is somewhat a matter of
personal preference.

b) "D" - measures the delay fram the time the "motor-on" signal is activated
until the "ready" signal to the 1793 floppy disk controller chip becomes
"true". The time is displayed in milliseconds (assumes that crystal Y2 on
the CPU board is 16 MHz.) The drive motors must be off when you call this
canmand, otherwise you will get the "*NOT READY" message. Trimpot R1 on
the FDC board sets this delay value from approx. 0.1 to 1.25 seconds.
Check the "motor start time" specifications of all of your disk drives,
then adjust trimpot R1 to a delay of slightly longer than the longest
motor-start-time of any of your drives. ** ATTENTION -- if you set this
value to a delay shorter than recommended, you may speed up normal reading
and writing somewhat, but you then run the risk of data on your disk
occasionally being mangled!

The "ready" signal the ST-2900 FDC board supplies to the 1793 chip is not
a true "drive ready" signal -- its real meaning is "drive motors ASSUMED
to be up to speed". By synthesizing the "ready" signal, the FDC board is
not dependent on the disk drives providing a "ready" signal, as many 5"
drives do not. However, this approach results in the 1793 thinking that as
long as the drive motors have been given enough time to come up to speed
that the drives are ready, even though they may not be (eg. no power
supplied to the drives, door open, etc.). It is then up to the disk driver
sof tware to time-out if no data is found after approx. 1 second. Since the
drivers usually retry the read or write operation several times before
giving up, the system may appear to "hang" for 15 seconds or more if a
non-ready drive is accessed.

c) "S d" - displays the rotational speed of drive "d" (assumes that Y2 on the
CPU board is 16 MHz). A soft sectored disk must be in the selected drive,
and the drive door closed, otherwise you will receive a "*TIME-OUT ERROR".
The data on the disk is not affected. The speed is displayed in rpm (eg.

- 17 -



ST-2900 0S-9

299.5) and the display continues to be updated with new readings until any
key is pressed on the keyboard. Acceptable values are between 298.0 and
302.5 rpm but the closer to 300.0 the better. Refer to the OEM or
maintenance manual for your particular drive on how to adjust its speed.

d) "Q" - quits DSPEED and returns to 0S-9.

We suggest you use this command to check the rotational speed of your drives
every few weeks, or more often if you use your system very much.

10.4 DUART DUART

B T T T T T T T T T e - T+ T T T T * + + &
ittt -ttt Lttt i e e

The DUART device driver controls both serial ports contained in the 2681
DUART chip. It replaces the CCIO, PRINTER, RS232, and ACIAPAK device driver
modules supplied with the CoCo version of 0S-9. The console descriptor
"TERM", serial printer descriptor "P", and second terminal descriptor "T1"
(source code supplied on disk) all point to the one DUART driver. It is
re-entrant, interrupt driven, and supplies a 128 byte input buffer and 128
byte output buffer for each port.

-Both serial ports are initially configured such that their RTS output lines
(OPO, OP1). are always asserted, while their CTS input lines (IPO, IP1) must
be asserted (either by the device they_are connected to, or by permanently
connecting the RTS output 1ine to the CTS input 1ine) in order for data
transmission to be enabled for that port. This setup can, of course, be
changed at any time after booting up by creating a program to write the
appropriate values into the MR2A, MR2B, and OPR registers of the 2681 DUART.

If X-ON/X-OFF handshaking is needed, use the TMODE and/or XMODE commands to
specify which codes to use for these two functions -- usually control-Q ($11)
for X-ON, and control-S ($13) for X-OFF. If the required X-ON/X-OFF codes are
already defined for some other purpose, such as 0S-9's "quit" character, or
commands to a screen editor, one or the other MUST be changed. While X-ON
and X-OFF are enabled, these characters will never be passed on to the user
program, not even to 0S-9 itself. The "quit" character is typically changed
to control-E ($05) when X-ON/X-OFF are activated. An obscure observation --
if the system ever misses receiving an X-ON character from the terminal
(perhaps due to receiver overrun during disk I1/0) the system will appear to
1o?k Ep. Merely typing the X-ON character from the terminal’s keyboard will
“unlock it.

Device descriptors for the DUART's port A use a port address of $FF20,
while port B descriptors must use $FF28.

- 18 -



ST-2900 0S-9

These device descriptors can be displayed or modified by the TMODt or XMODE
canmands. Two values need special mention:

a) The "baud" value is encoded as per the Radio Shack manual: '00'=110 baud,
'01'=300, "02'=600, *03"=1200, "04'=2400, '05'=4800, "06"'=9600,
"07'=19200. NOTE -- this code is ignored for port A, which continues to
use the same baud rate it was set to after powerup or system reset. Refer
to Appendix C of the ST-MON 2.04 manual for instructions on changing the
baud rate of port A.

b) The "type" value is encoded as follows:

bit 7 must always be a "1’
bit 6 not used - set to "0’
bit 5 '0" = 1 stop bit (1 1/2 if 5 data bits selected)
*1" = 2 stop bits (2 1/2 if 5 data bits)
bits 4,3,2 268?: = ngdparity
=0
'000" = even "
:8%%: = mark ""
= space
bits 1,0 *00" = 5 data bits per word
hOlh = 6 " " " "
alon = 7 (1] 1] ] "
hllh = 8 " " " "

For example, $93 = 8 data bits, no parity, 1 stop bit, while $A6 = 7 data
bits, odd parity, 2 stop bits. NOTE -- this code is ignored for port A,
which continues to use 2 stop bits, no parity, and 7 or 8 data bits, as it
was set to after powerup or system reset. Refer to Appendix C of the
ST-MON 2.04 manual for instructions on changing the number of data bits
for port A.

The "baud" and "type" values do NOT take effect immediately after being
changed by TMODE or XMODE. Actually, changing these two values with TMODE has
no effect at all on the ST-2900 system. When changed by XMODE, the new values
are acted on the next time the INIT subroutine in the DUART device driver is
called for that particular port. This might require you to reboot the
system, then run XMODE before the port is used for the first time. You can
avoid re-booting if you create a program that writes the appropriate codes
directly into the DUART's MR1A, MR1B, MR2A, MR2B, CSRA, CSRB registers.

If you ever receive 8 bit machine code data (ie. binary, not ASCII) on a
DUART port, the "xon", "xoff", "pause", "quit", and “abort" characters for
that path must be disabled (ie. set to zeros). This is true even if the
program uses 0S-9"s IS$READ and ISWRITE calls which do not perform SCF
editting functions. These five characters, if enabled, are acted upon in the
DUART driver itself.

If the DUART port is set to 8 data bits and no parity, a properly designed
program would send and receive non-ASCII data by using the SS.O0PT function

code with the I$GETSTT and I$SETSTT calls to save the current settings of
those 5 characters, zero them, perform the binary data transfer, then restore

the original settings.

- 19 -




ST-2900 0S-9
10.5 KERNLFIX KERNLFIX

- I B T o T T T T T o T T o o o T o o 0 o o o e o e o e > T e . > e S e e e S N S A e e M S S T M S A e D S o

e e b - 1ttt st R 1

Syntax: KERNLFIX /devname

The KERNLFIX command is used to delete the 0S-9 kernel that the CoCo versions
of COBBLER and OS9GEN write onto track 34. The ST-2900 requires the kernel in
a file called "0S9Kernel" (cf. KERNLSAVE), so the track 34 data is not
needed. KERNLFIX reclaims that disk space. The "/devname" parameter is the
nane of the drive containing the disk to be updated (/DO, /D1, /D2, /D3,
/Sb0, /Sb1, /SD2, /SD3).

Example: assuming drive 0 contains a CoCo format disk newly formatted by
SFORMAT:

0S9: KERNLSAVE /DO
0S9: COBBLER /DO
0S9: KERNLFIX /DO

"ERROR #119" means the kernel was not found as and where expected. This can
happen if the disk has fewer than 630 total sectors, or if the disk got too
full before running KERNLFIX. This error only represents a minor
inconvenience -- the disk can still be used as a system disk. A1l that
happened was that the superfluous kernel was not deleted, so you lost 15
sectors from the total storage capacity of the disk.

On many other 0S-9 Level I systems the kernel resides in EPROM. The main
reason the ST-2900"'s doesn’t is for licensing reasons. The Radio Shack CoCo
doesn”t have the kernel in ROM either, but stores it in sectors 1-15 of track
34 (side 0) of each system disk. This puts it out of the way nicely if you
are using a 35 track disk, but breaks up the disk's data area if you use 40
or 80 track drives. Since the kernel is not stored in a regular file, but is
- "hidden", it is difficult for you to examine it. The ST-2900 stores the
kernel in a normal file called "0S9Kernel", which must be present on each
bootable system disk. The "D 0C/D 0S" boot routines in ST-MON are
intelligent enough to be able to find the 0S9Kernel file in the roo
directory. '

DO NOT use KERNLFIX to update the Conversion/boot disk, nor the CoCo/System
disk, nor backup copies of either of them. It should only be used on disks
you create to be directly bootable (ie. configured for your ST-2900
installation as per sections 7.0 and 8.0).

- 20 -



ST-2900 0S-9
10.6 KERNLSAVE KERNLSAVE

e T I T T T T+ T T ¥+ T T ¥ 3 ¥
R s it it R e

>Syntax: KERNLSAVE /devname

The KERNLSAVE command is use to create a file called "0S9%ernel" in the root
directory of a bootable system disk. The file contains a copy of the 0S-9
kernel (that sits in memory at $F000-$FDFF), consisting of modules "0S9" (or
0S9pl), "0S9p2", "Init", "Boot", a small data area sandwiched between (but
outside of) two of the modules, and the $FEXX subroutine and data area
(described in Appendix G). The directory entry of this file must be in the
first data sector of the root directory where ST-MON can find it, so
KERNLSAVE should be run immediately after the new disk is formatted, before
any other entries are added to the directory. Also, the 0S%Kernel file must
.be contiguous, not scattered.

The "/devname" parameter is the name of the drive containing the disk to be
updated (/DO, /D1, /D2, /D3, /SDO, /SD1, /SD2, /SD3). Refer to the example
in section 10.5 above for more information.

10.7 MODFIX MODFIX

e I T T T T T T v
4+ttt 1 -ttt T Tt Tttt - 2 e R R

Syntax: MODFIX ‘[<module name>]

This canmand is used to update the header parity and CRC bytes of a module in
memory that has been patched using DEBUG. Using MODFIX is much faster than
the usual 0S-9 procedure of first saving the modified module to disk and then
using the VERIFY command with the "U" option. It's also more dangerous if you
make a mistake, so be very careful.

You can specify which module you want to update either by giving its name, or
its address in memory. If the module name is specified as a parameter in the
canmand line, MODFIX will look it up in 05-9's module directory, then display
the address where it was found. If no parameter is given, the program will
pranpt you to enter the address of the module.

Next MODFIX displays the module name and size (in hex) so you can double
check that you specified the right name or address, then asks if you want to
go ahead with the update, or quit without updating. If instead of the name
and size being displayed, you get the wrong module name or garbage, you have
entered the wrong address -- DON'T update.

If you answer the prampt with "Y" for yes, the command calculates the new
values, updates the module in memory, then displays the new values.

- 21 -



ST-2900 0S-9

Example #1: Example #2:
0S9: MODFIX 0S9:MODFIX MATHS9
MODULE NAME NOT SPECIFIED OR NOT FOUND MODULE ADDRESS = A700
MODULE ADIRESS = A700 NAME = MATH99
NAME = MATH99 SIZE = 03E7
SIZE = 03E7 OK TO CONTINUE (Y/N)? - Y
OK TO CONTINUE (Y/N)? - Y ' MOD TYP / LANG TYP = 21
MOD TYP / LANG TYP = 21 ATTRIB / REV = 81
ATTRIB / REV = 81 : HDR PARITY = 78
HDR PARITY = 78 MODULE CRC = 074300
MODULE CRC = 074300 UPDATED OK
UPDATED OK 0S9:

0S9:

In the examples above, the "21" is the module-type/language-type byte, the
“81" is the attributes/revision byte, the "78" is the header parity byte, and
the "074300" is the module CRC.

ERROR OR WARNING MESSAGES:
a) "Module name not specified or not found" - one of three situations
occurred:

- you did not specify a module name as a parameter on the command line
(perhaps on purpose because you wanted to specify an address instead?)

- the module name you specified is more than 32 characters 1on?

- the module name you specified could not be found in the module
directory

b) "No sync bytes found at this address" - the address you specified is not
the start of a module, as no module sync bytes ($87CD) were found there.

c) "Can't update module - is it in ROM?" - after MODFIX stores the new
header parity and CRC values into the module, it checks to see if they
were stored properly (ie. can be read back). If not, you could have one
of several problems:

- part or all of the module resides in ROM and cannot be updated. You
must have specified the wrong address.

- you have one or more bad memory chips. Perform a thorough memory test
(cf. ST-MON"s "T" conmand).

- part of the module resides in the 1/0 address space or other area that
contains write-only registers. You must have specified the wrong
address.

- part or all of the module occupies address space that does not have
any memory assigned to it. You must have specified the wrong address.

d) "Invalid hex digit" - when required to enter a hexadecimal number, you
keyed in a value other than O thru 9, or A thru F.

- 22 -



ST-2900 0S-9
10.8 SDISK29 SDISK29

e o o e e S S e o S - — e T S e W S A N m Em MR MR SN ST A SR AT e Sm S N S R I TSN
43 2+ 4 4 R R e e

The SDISK29 module is a "device driver", not a command. It replaces the
"CCDisk" module supplied with the CoCo version of 0S-9. In conjunction with
the SFORMAT command (see section 10.9) it allows you to fully use any type of
minifloppy drive with the ST-2900 system under the 0S-9 operating system.
This includes using up to four drives, each with its own step rate and
characteristics independent of the others. Each drive may be single or double
sided, with 35, 40 or 80 tracks, and step rates of 6, 12, 20 or 30 milli-
seconds. The track at which write precanpensation begins for double-density
disks can also be modified (see Appendix A).

You will be able to read, write and format disks in the CoCo 0S-9 format on

~any of these drives, and also read, write and format the standard 0S-9 single

and double density fonmats used on most other 0S-9 systems. In addition,

ﬂlZAR}fonnat disks can be read and written. See section 10.2 for more
etails.

SDISK29 is based on D.P. Johnson's SDISK driver for the CoCo (under licence),
although it has been highly modified internally. Its heritage permits it to
use other products that depend on SDISK, such as D.P. Johnson's PC-XFER
utilities that let you read, write, and format MS-DOS disks, and transfer
files between Radio Shack Disk BASIC and 0S-9.

The driver routines have been written in such a way that attempting to use a
drive that does not have a diskette inserted (or the door was left open, or
the drive isn't even attached) will rarely lock the system up to the point
where system reset and re-booting would be required. However, the drivers do
spend half a minute, or more, trying to read or write to the device before
finally giving up. Don"t be too hasty to press the system reset switch.

The following SETSTT function calls are supported and function as described
in the Radio Shack "0S-9 Technical Information" manual under the ISSETSTT
call:

$03 SS.RST restores head to track 0
$04 SS.WTK formats a track
$0A SS.FRZ freezes DD. infonmation

The following new GETSTT/SETSTT function calls have also been implemented:

I$GETSTT $80 SS.DREAD direct read function reads specified sector into
user buffer. 128, 256, 512 or 1024 byte sectors
can be read. Can be used to read non-0S9 disks.

I$SETSTT $80 SS.DWRIT direct write function writes data fran user buffer
to specified track/sector/side. 128, 256, 512,
or 1024 byte sectors can be written. Can be used
to write to non-0S9 format disks.

I$SETSTT $81 SS.UNFRZ unfreezes DD. information. It reactivates the
reading of LSN O to DD.xxx variables after the
SS.FRZ call has shut it off.

- 23 -



ST-2900 0S-9

SS.UNFRZ : Entry conditions:
A = path number
B = $81
Exit conditions:
None

SS.DREAD : Entry conditions:

A = path number

B = $80

U = logical track (msb) / physical sector (1sb)
X = buffer address to read data into

Y = sector size / format

bits 8-15 least significant 8 bits of 12 bit sector size
in bytes

bits 4-7 most significant 4 bits of 12 bit sector size
with bit 7 being the most significant bit of
the 12 bit number

bit 3 = (not used) - set to 0

bit 2 = tpi of data on diskette (0=48 tpi, 1=96 tpi)

bit 1 = density of data on diskette (0O=single, l=double)
bit 0 = side (0 or 1)

Exit conditions:

Buffer pointed to by X register contains data read fram sector
If error:

CC = C bit set

B = error code

Note - logical track numbers are identical to physical track numbers
unless you have a 48 tpi diskette in a 96 tpi drive. 1In that
case, every other physical track is skipped, so logical track
numbers are multiplied by 2. For example, logical track 7 on the
diskette would be automatically converted to physical track 14
for the drive. This is often referred to as "double-stepping”.

- 24 -



SS.DWRIT :

ST-2900 0S-9

Entry conditions:
path number
$80
logical track (msb) / physical sector (1sb)
buffer address of data to write out
sector size / format
bits 8-15 least significant 8 bits of 12 bit sector size
in bytes
bits 4-7 most significant 4 bits of 12 bit sector size
with bit 7 being the most significant bit of
the 12 bit number

A
B
U
X
Y

bit. 3 = (not used) - set to O

bit 2 = tpi of data on diskette (0=48 tpi, 1=96 tpi)

bit 1 = density of data on diskette (0O=single, l=double)
bit 0 = side (0 or 1)

Exit conditions:

Data fram buffer pointed to by X register is written to disk
If error:

CC =C bit set

B = error code

Note - if sector sizes other than 256 bytes are to be written, then the

verify option MUST be switched off. Use I$GETSTT and I$SETSTT
functions $00 (SS.OPT) to do this after opening a path to the
device but before using the SS.DWRIT function call. Failure to
do so will either give you a "write error" message, or even
worse, "clobber" data or programs in memory. This is because
SDISK29 allocates a buffer of exactly 256 bytes in length into
which to read the sector it just wrote.

You may only specify sector sizes of 128, 256, 512, or 1024 bytes for direct
read/write calls, as the disk controller supports only these. Any other value
could cause the system to "lock up" or "hang up". If all the "most/Teast
significant bit" verbiage above confuses you, here is some sample code you
can use as a guide to set up the sector size in the Y register for the direct
read/write calls:

LDD #512 sector size = 512 bytes

EXG A,B

ASLA

ASLA

ASLA

ASLA

ORA  #$02 bits 0-2 format = 48 tpi / double density / side O
TFR  D,Y

- 25 -



ST-2900 0S-9

10.9 SFORMAT ’ SFORMAT

T D D — =
sz=== e o - o > T T S = = > o S A M B S W M e e B e S = A == o e
BRIt 1  2 t 4t - - it 2 4+ 3 ¢+ 2 2+ 4 2 4 > 2+ T

SEORTAT is a replacement for the CoCo 0S-9 "FORMAT" command. Its syntax is
similar:

SFORMAT /devname [<option list]

where [/devname] is the device name of the disk drive, and [<option 1ist> ]
is]a Tist of options which may be specified to override certain default
values.

SFORMAT when used with SDISK29 installed allows formatting CoCo 0S-9 format
diskettes with one or two sides and any number of cylinders, up to the
capacity of the drive. When the device name ("/devname") is for a standard
0S-9 format it will also allow formatting of the standard 0S-9 single and
double density formats. However, formatting of MIZAR format disks is not
currently supported. See section 10.2 for more details. A minor side-effect
of running SFORMAT is that 0S-9's real-time clock may gain or lose several
seconds.

SFORMAT begins by displaying a 1ist of parameters it will use in the
formatting process for the diskette in the specified drive, then waits for
your response to either quit the program without formatting, begin the
formatting process, or first change some parameters.

The format parameters displayed are based on the drive capabilities and other
default values defined in the device descriptor, as modified by any override
options specified on the command line when SFORMAT is called, or specified
after responding with "N" to the "Ready?" prompt.

NOTE - the "R" option suppresses the parameter display and immediately begins

-the format operation. Since it doesn’t give you a chance to double-check
what values will be used, we recommend you avoid using it.

The available command line override options are:

Single density (valid for 0S-9 standard formats only)
Double density

Ready (proceed immediately with formatting)

1 side

2 sides

48 tpi (to format disk at 48 tpi on 96 tpi drive)
"disk name"

"no. of cylinders’

:interleave:

nuw n o uwu

o200 nm

If you don't supply a diskette volume name as an option on the command 1ine,
SFORMAT will prompt you for one later. The name can be from one to 32

characters long, and may include spaces or punctuation.

" The diskette to be formatted must NOT be write protected. If you attempt to

format a write protected disk, you will get an "ERROR #245 - WRITE ERROR"

ggsiage. The system will return to the "0S9:" prompt without formatting the
isk.

- 26 -



ST-2900 0S-9

To format a disk in CoCo 0S-9 format use the /DO to /D3 device names; to
format a standard 0S-9 format disk use the /SDO to /SD3 device names. Do NOT
use the /MDO or /MD1 names for formatting as SFORMAT does not currently
‘support the MIZAR format. IMMEDIATELY AFTER FORMATTING YOU SHOULD MAKE A
NOTATION ON THE DISK®S LABEL TO INDICATE WHICH FORMAT IT USES. This habit
will save you lots of guess-work and grief as time goes by.

The formatting process has three phases:

a) The diskette is initialized by writing marks to divide each track into

" sectors (much like the yardage lines on a football field). Note -- in
doing so, all data previously stored on that disk is erased and can NEVER
be recovered.

b) An attempt is made to read back each sector to detemine if it is usable,
or defective (1ike a piece of paper with a grease spot on it that won’t
let a pen write on it). Defective sectors are deleted fran the list of
"free" (je. available) sectors, and no attempt will be made to use them in
the future.

c) SFORMAT writes the identification sector, disk allocation map, and root
directory to the first 3 or 4 sectors of track zero. These sectors must
not be defective. For more information on the contents of these special
sectors, refer to the "0S-9 Technical Information" manual.

If the newly formatted disk will not be used to "boot" fram, it is ready to
use after formatting. Otherwise you should refer to sections 7.0 and 8.0
earlier in this manual entitled "Creating a New Bootable ST-2900 0S-9 System
Disk ...".

NOTE -- when formatting a system disk to boot from, the disk must have at
least 627 total sectors for the OS9GEN and COBBLER commands to work, because
the Radio Shack versions of those commands write the operating system kernel
to LSN 612 - LSN 626 (even though these sectors are later deleted with
KERNLFIX). Examples of double-density fomats which provide enough sectors
for a system disk are:
630 sectors - single-sided, 35 track, CoCo format
720 sectors - single-sided, 40 track, CoCo format
1260 sectors - double-sided, 35 track, CoCo format
1440 sectors - double-sided, 40 track, CoCo format
1440 sectors - single-sided, 80 track, CoCo format
2880 sectors - double-sided, 80 track, CoCo format
- 634 sectors - single-sided, 40 track, standard format
1114 sectors - double-sided, 35 track, standard format
1274 sectors - double-sided, 40 track, standard format

Refer to the write-up on the DO, SDO, etc. device descriptors in section 10.2
for more information regarding CoCo vs. standard 0S-9 formats.

Under 0S-9, diskettes don’t have to be re-formatted as often as with FLEX.
When an 0S-9 disk has all files and directories (except root directory)
deleted, the entire free space automatically becomes a single neat and
contiguous area. When a FLEX disk has been used much, then has all its files
deleted, its "free chain" can be as fragmented and tangled as a plate of
sgaghetti. The disk then needs to be reformatted to create an untangled
"free chain".

- 27 -



ST-2900 0S-9
Example:

0S9: SFORMAT /D1 1 *35°

*%% STANDARD DISK FORMAT ***
(C) Copyright 1983 D.P. Johnson
ALL RIGHTS RESERVED

Licensed to Sardis Technologies

FORMAT PARAMETERS:

Double Density
35 Cylinders
1 Sides
Color Computer format
18 Trk 0 Sectors
18 Sectors/Track

Formatting drive /D1
y (yes), n (no), or q (quit)
Ready? Y
Volume Name=
JUNK COLLECTION
Verifying tracks:
34
630 Good Sectors
0S9:

-10.10 VIA and PL VIA and PL

- ————— — T ———— — T - = - = A . . . . NS e MR AR S TSR ST AT A S mE T EEISRET
4+ 5 1 1 3Tttt - b e

The "VIA" device driver, and its matching "PL" device descriptor, implement
an 8 bit parallel output port using either the A side or B side of ‘the 6522
VIA on the FDC board. The most common use for VIA/PL will be to drive a
printer that has a parallel interface.

As supplied, VIA uses the A side of the 6522. Only six equates need to be
changed in the source code (included) to use side B instead. If both ports
are to be implemented, you will need to create two versions of VIA and two of
PL (eg. VIAl, VIA2, PL1, PL2), as VIA is not re-entrant.

For more information, study the supplied source code.

The interrupt driven, multi-tasking, path oriented nature of 0S-9 makes it
feasible to have more than one printer connected, with all of them

simul taneously in use.

IMPORTANT - if you connect the printer directly to the unbuffered VIA outputs
and inputs, keep the cable as short as possible, ideally less than 18".

- 28 -



ST-2900 0S-9

11.0 APPENDIX A - MODIFYING DISK DRIVE PARAMETERS

e e e e o - o - - —— T - - o o S . - o S e M S M W S W S E S S S T M T® TR M WU M e S e wm s s e
4+ 4+ 33 3+ 3 3 F F + 3 3 3 3t 33 3 F 3 2 2

‘11.1) Use the LOAD command to load the MODFIX command into memory.

11.2) Call up the DEBUG command. For each one of the ten disk drive
descriptor modules (DO, D1, D2, D3, SDO, SD1, SD2, SD3, MDO, MD1) that you
will be updating do at least steps a, b, ¢, p, of the 16 steps immediately
below, or all 16 steps if desired. To leave a value unchanged, press only
the [CR] key, omitting the "=xx". BE VERY CAREFUL. If you think you made a
mistake and don’t know how to correct it, you would be advised to re-boot.

L nnn[CR] (a)
. +14[CR] (b)
=rr[CR] (c)
[CR] (d)
=dd[CR] (e)
[CR] (f)
=cc[CR] (g)
=ss[CR] (h)
=vv[CR] (1)
[CrR] ()
=tt[CR] (k)
[CR] (1)
=z2[CR] (m)
=1i[CR] (n)
=gg[CR] (0)
$modfix nnn[CR] (p)

where - [CR] means press the carriage return key

- nnn is the name of the descriptor module (eg. SDO)
- rr is a stepping rate code:
00 = 30 msec. 02
01 = 20 msec. 03

- dd is the drive's density code:

12 msec.
6 msec.

nn

00-= single density only, 48 tpi
01 = double density capability, 48 tpi
02 = single density only, 96 tpi
03 = double density capability, 96 tpi

- ¢C is number of tracks (in hexadecimal)

23 = 35 tracks; 28 = 40 tracks; 50 = 80 tracks
- ss is number of sides

01 = single sided drive; 02 = double sided drive
- vv is verify-after-write code

00 = yes, 01 = no
- tt is default sectors per track (in hex)

12 = 18 sectors per track - CoCo format
OA =10 " ! " - Standard 0S-9 single density
10=16 " ! " - MIZAR or standard 0S-9 double dens

- zz is default sectors per track (in hex) for track O only
OA = 10 sectors per track - Standard 0S-9
12=18 " " " - CoCo format
10=16 " ! " - MIZAR format
- i1 is sector interleave factor
04 is a good value to use

- 29 -



ST-2900 0S-9

- gg is segment allocation size
08 is a canmon value

11.3) The track number at which to start write precompensation cannot be

different for each drive -- only one system-wide setting is allowed. The
default is to precomp tracks 43 and above (only if double-density). Refer
to the specifications of your disk drives as to their requirements for
write precamp. Steps a to d below are only needed if you want to change

the default track number. While you are still in DEBUG, key the following
steps:

L SDISK29[CR] (a)
. .+16[CR] (b)
=tt{CR] (c)
$MODFIX SDISK29[CR] (d)

where - [CR] means press the carriage return key
- tt is the track number (in hex) of the first track to precomp

00 = track 0 (means to precomp all tracks)

16 = track 22

2B = track 43

FF = track 255 (effectively disables write precomp)

11.4) Exit the DEBUG command with "Q"

11.

5) If you want these new values to be in effect when you boot up again in
the future, a new 0S9Boot file containing the patched modules will have to
be created on disk using the COBBLER, or SAVE and OSSGEN commands.

- 30 -



ST-2900 0S-9

12.0 APPENDIX B - COCO 0S-9 MODULES REPLACED WITH ST-2900 VERSIONS

o - > = o ——— —— ——— — - —— o —— — - e S e = NS MM TS MR WS DTN AT A Te T I A IS e I
4233 433+ 3 34 33+ 3423323 2R e

coco ST-2900

CCIO DUART

PRINTER DUART

RS232 DUART

ACIAPAK DUART

TERM TERM

P P

T1 T1

T2 T1

CCDisk SDISK29

. DO po, SDO, MDO
) D1, SD1, MD1

D2 D2, SD2

D3 ' D3, SD3

FORMAT sformat

Clock Clock

13.0 APPENDIX C - CONTENTS OF THE ST-2900 0S-9 CONVERSION BOOT DISK

——— - —— o — T T T —— — ———————— e AN e SR S TR S S T ST TIISI=SSSS
T 3 3 T T 3 i Tt i i

Root directory:
0S9Kernel - conversion progran
0S9Boot - ST-2900 drivers and device descriptors DUART, SDISK29, CLOCK,
D0-D3, SDO-SD3, MDO-MD1, TERM, P, T1, VIA, PL

CMDS directory (see be]ow)

SOURCE

CMDS directory: -
formats a disk

Sformat -
Kernlsave - saves 0S-9 kernel to disk
Kernifix - deletes CoCo type kernel fran disk

Modfix - updates parity and CRC of patched module
Dspeed displays disk drive speed, etc.

SOURCE directory:
Via - source code of VIA and PL modules
Devdesc - source code of D0-D3, SDO-SD3, MDO-MD1, TERM, P, Tl

14.0 APPENDIX D - Typical ST-2900 0S-9 Level I Memory Map

————— - ———— T~ ——— - — T — —— — —— - o o= e = M mem e As AR A S e e e T IINENIITSSSZEEE
43 3 ittt Tttt Tt Tt bt ==Z=====

FFOO - FFFF I/0 and other areas controlled by SAM chip

FEE7 - FEFF interrupt jump table

FEOO - FEE6 ST-2900 0S-9 data area and subroutines (cf. Appendix G)

FOO0 - FDFF modules 0S9, 0S9p2, Init, Boot

B700 - EFFF Shell, file managers, device drivers, 05-9 data structures, etc.
0BOO - B6FF " free user memory

0000 - OAFF 0S-9 data structures and direct page

- 31 -



ST-2900 0S-9

15.0 APPENDIX E - CHANGES TO THE RADIO SHACK COLOR COMPUTER 0S-9 MANUALS

3 I T . T T T T T T o T o o o o o o o v o e = T T e S e e e e e e G S = = = e S A e S A = S S m M e e WS S S e e = e =

e N S - 1ttt ittt -ttt -t -t 2 5+

15.1) "Getting Started With 0S-9" (purple)
a) You can't check the ST-2900"s disk drive speed until after 0S-9 is
booted up. Then use the DSPEED command instead.
b) Ignore the booting up instructions, and follow those in this ST-2900
0S-9 manual instead.

15.2) "0S-9 Commands" (red)
a) Ignore the "graphics memory not allocated" message in MFREE.
b) The following sections do not apply to the ST-2900:
- Appendix B / Display System Functions
- Appendix C / Keyboard Codes
- Appendix D / Keyboard Control Functions

15.3) "0S-9 Program Development" (orange)
a) The DEFS/SysType file needs to be modified

15.4) "0S-9 Technical Information" (blue)
a) Interrupt vectors that the CoCo has at $0100-$010B are at
$FEE7-$FEFE in the ST-2900.
b) The ST-2900 does not use NMI interrupts for disk 1/0.
c) IT.TYP (bit 4: *1" = MIZAR disk format for ST-2900)
d) System call IS$GETSTT functions SS.DSTAT, SS.JOY, SS.Alfas, SS.Cursr,
and S$S.ScSiz are not supported on the $T-2900.

15.5) Keyboard codes:

CoCo Standard CRT terminal
ENTER Return
CLEAR BREAK Escape
CLEAR 7 A
CLEAR A control-A
CLEAR C or SHIFT BREAK control-C
CLEAR D control-D
CLEAR E or BREAK control-E
CLEAR H or backspace or <- control-H or backspace
CLEAR Q control-Q
CLEAR W control-W
CLEAR X or  SHIFT «- control-X

15.6) Misc.

a) Do not run the CLOCKPATCH.COM procedure found in version 01.01.00,
even if you are in a country with 50 Hz power, as the ST-2900 clock
depends on crystal Yl on the CPU board, not on the mains supply
frequency .

b) The ST-2900 has 10 clock ticks per second, instead of the 60 that the
CoCo uses.

c) The CHD command in the latest versions of 0S-9 tries to write to the
disk. If the disk is write protected, 9 or 10 seconds will elapse
while the system tries several times, unsuccessfully, to write. No
problems are created -- except for testing your patience!



ST-2900 0S-9
16.0 APPENDIX F - TUNING 0S-9, AND OTHER TIPS

R R N N S N L T N S T N L o S S S R R S R E E E E ECECEEE S r mEC CE T mr m e o = o o o -———— - - -

When you ask 05-9 to run a program (through the Shell or the BASICO9 “Run"
canmand, or Debug’s "$" conmand, etc.) 0S-9 first loads the program fram disk
(assuming it is not already in memory). When the program is finished
executing, it is deleted fram memory.

The process of finding the program on disk and loading it into memory often
takes longer than actually running the program! This can be somewhat
annoying for commands which are used often, such as DIR. If it were possible
to pre-load several programs into memory, they would be available for instant
use. This is not possible with the FLEX or CP/M operating systems, as almost
all of the utility programs have to reside at the very same location.

The developers of 0S-9 had a better idea. They started out with several

powerful concepts:

a) have the operating system keep track of what portions of memory are
currently in use, and let it, rather than the user, have control over
where in memory to load a program.

b) require all programs to be written in position-independent-code (PIC) so
they will execute properly no matter at which address they are located.

c) encapsulate all programs into "modules".

d) have the operating system maintain a directory of all modules currently in
memory.

These concepts are the basis for 05-9's ability to have several programs

co-resident in memory, where they are available for instant execution.

0S-9"s "Load" command is used to load programs into memory. Some of the
commands you might want to pre-load are LOAD, DIR, DEL, RENAME, LIST, LINK,
DATE, MAKDIR, FREE, MFREE, MDIR, PROCS, COPY, etc. Remember, though, that
the more commands you have in memory, the less free user memory you have to
execute large programs such as BASICO09, word processing software, etc.

Another reason for wanting to pre-load these commands, besides the speed
increase, is that the system disk no longer has to occupy a drive when you

run these commands. This is what makes a single drive configuration much more
feasible under 0S-9 than FLEX.

There are several ways to load these programs. You can manually type in
"LOAD <program>" for each one. The load commands can also be put into your
"startup" file. In either case the first program to be loaded should be
"LOAD" itself (think about that for a moment).

These two methods have several problems. If you load more than three or four
programs, it seems to take forever. The second problem is more obscure.

0S-9 Level I only allocates memory in 256 byte chunks. Each time you run
LOAD a separate allocation is done. Even if you merge several small programs
into one file (a useful trick for 0S-9 Level II) and call LOAD only once,
0S-9 Level I still does a separate allocation for each module in the file.
When you load in a 2200 byte program you waste 104 bytes (9*256 - 2200 =
104), which is only 4.5%. But if you load in 22 programs, each of 100 bytes,
you waste 3432 bytes (22*256 - 22*100 = 3432), or 61% !! You can't afford
such waste on a 64K system.

- 33 -



ST-2900 0S-9

The quickest, most memory efficient way to load these commands on an 0S-9
Level I system is by including them in the 0S9Boot file. All modules in the
0S9Boot file are loaded contiguously into memory, not on 256 byte page
boundaries, so there is no wasted space between them. It only takes one or
two additional seconds to boot with such a boot file. The 0S9GEN command is
used to add the desired utility programs to the 0S9Boot file (refer to the
"0S-9 Commands" manual). These same programs can then be deleted from the
CMDS directory (on that disk only).

Now when you use one of these commands, you get instant response -- faster
than a hard disk! Even a RAM-DISK can’t compete, as it has to first move the
progran fran RAM-DISK memory to user memory, then check for a valid CRC.

A major disadvantage of this procedure is that any program in memory that was
loaded with the boot file cannot be removed (using UNLINK) to temporarily
reclaim that memory for other uses. Only by booting from a disk that contains
a smaller 0S9Boot file can you increase free user memory.

If you occasionally need absolutely maximum free memory (to compile a very
large C program, for example), having a second boot disk that contains the
smallest possible boot file is mandatory anyways. Modules IOMAN, RBF, SCF,
DUART, SDISK29, CLOCK, TERM, DO, SHELL, SYSGO must always be included.
Depending on what you will be running, you may also need descriptors P and
Dl. A11 other modules (even PIPEMAN, PIPER, and PIPE) are optional.

In order to create a new boot file that omits one or more of the modules from
the boot file currently in use (ie. in memory because it was last booted
from) you first use the SAVE command to save to one or more disk files the
modules to be included in the new boot file. OS9GEN is then told to input
these files.

By the way, if 0S9GEN ever gives you a "path name not found" message that you
-can"t explain, check to see if the RENAME command is either in memory or in
the current execution directory, as 0S9GEN calls it.

If you are creating a new bootable system disk that is to contain everything
an existing system disk has -- only the 0S9Boot file contents will be
different -- try this. After you have run KERNLSAVE, OS9GEN, and KERNLFIX,
create a procedure file to copy all files fran the old disk to the new. For
example, to copy all files from DO to D1, type:

CHD /DO

DSAVE -S32 /DO >/D1/makecopy #10K

The only problem to overcome is that the "/Dl/makecopy" procedure file just
created includes command lines to copy the "0S9%ernel" and "0S9Boot" files.
These two files have already been put on the new disk with KERNLSAVE and
OS9GEN. If you don't do something about those two lines before running the
"makecopy" procedure, it will abort with an "ERROR #218 - file already
exists" error.

The most obvious method is to use a text editor to delete the two lines that
would copy those two files.

Or, instead of deleting those two lines, you could insert a line at the
beginning of "makecopy" that contains only “-x", with another 1ine at the end

- 34 -



ST-2900 0S-9

with "x". These are built-in Shell commands that disable and enable
abort-on-error. When the COPY commands fail for files already on the new
.disk, the procedure will continue at the next command instead of aborting.

With either of these tactics you would key the following to run the modified
procedure file:

CHD /D1

/D1/makecopy

DEL /D1/makecopy

There is a third method that eliminates the need to use an editor to modify
the procedure file. 1Its syntax is not immediately apparent from reading the
description of the Shell. When you tell the Shell to execute a procedure
file, it actually starts up another process that runs a second "incarnation"
~or "invocation" of the Shell that has its standard input redirected to the
procedure file. Whenever the Shell is called from another program (in this
case the original "invocation" of the Shell), it can have parameters passed
to it which are executed as its first line of input, before any comnands in
the procedure file are executed. For example, we could pass it a command line
containing the built-in command "-X". This lets us run the unmodified
procedure file this way:

CHD /D1

/D1/makecopy -X

DEL /D1/makecopy

When the "makecopy" procedure file ends and you return to the original
“invocation" of the Shell, the effect of the "-X" parameter disappears, as it
only affected the second "invocation" of the Shell.

Here's one final tip that will help you to reduce memory fragmentation. The
problem is partially described in the "0S9 Commands" manual in the section
"Basic Memory Management Functions - Memory Fragmentation". But not all the
culprits are mentioned there. When a device such as the printer is used for
the first time after booting, it has some "static storage" allocated. This
block can unfortunately be allocated in the middle of memory if the device is
opened while a program (such as Screditor III) has grabbed a large chunk of
memory.

The cure is to open the device BEFORE running any such programs. Although
you could write a program to do an ISATTACH call for the device, adding a
line like "DISPLAY 00 >/P" to your startup file will do the job.

P.S. -- the preceeding discussion was inspired by, and contains several tips

found in, two articles in the May "83 issue of '68" Micro Journal. One was
written by Peter Dibble, the other by Paul Burega.

- 35 -




ST-2900 0S-9

17.0 APPENDIX G - Additional Sources Of Software And Other Information

= T T N T o T T T o o T T o T o T o o o o o o oo o o B o = S S e e > A D e S S A e = S W S A S e S e N S S - S G S

e e e e e R S v i P -ttt -ttt 1+ 1

Several software vendors have a low-priced CoCo 0S-9 and a higher-priced
non-CoCo 0S-9 version of the same program. The CoCo versions usually do some
checking to verify that they are actually running on a CoCo, and not on any
other machine. If the program merely checks for the presence of a CoCo 0S-9
module such as "CCDisk" or "CCIO", adding a small dummy module with that name
to the 0S9Boot file is enough to allow the CoCo version to run on the
ST-2900. If the only difference is that one version is supplied on a CoCo
0S-9 format disk and the other on a standard 0S-9 format disk, the ST-2900
will be able to use either one.

Some protection schemes are not so easily bypassed. In that case, remember
that although the ST-2900"s 0S-9 originated from the Radio Shack CoCo
version, IT IS NOT REALLY RUNNING COCO 0S-9 -- the new driver routines and
different hardware configuration have in effect converted it to "standard"
0S-9. Keep this in mind as you check out the following sources:

17.1) "68" Micro Journal, a magazine published by:
Computer Publishing Inc.
5900 Cassandra Smith Road
P.0. Box 849
Hixson, TN 37343 U.S.A. (615) 842-4600

This is "the" magazine for 6809 users. It carries regular features on
0S-9, and has ads fram 0S-9 software suppliers. This magazine is
definitely a "must have" item. CPI have also published "0S-9 USER NOTES",
a collection of Peter Dibble's monthly columns of the same name that
appeared in "68" Micro Journal.

17.2) "RAINBOW", a magazine published by
: FALSOFT, Inc.
9529. U.S. Highway 42
P.0. Box 385
Prospect, KY 40059 U.S.A. (502) 228-4492

Although "Rainbow" covers the Radio Shack CoCo scene, a few articles and
advertised software products are also applicable to ST-2900 0S-9. They
have also published a book called "The Complete Rainbow Guide to 0S-9",
written by Dale Puckett and Peter Dibble.

17.3) Frank Hogg Laboratory
The Regency Tower, Suite 215
770 James St.
Syracuse, NY 13203 U.S.A. (315) 474-7856

Ask for their "Serious Users Software Catalog" that is chock full of
assemblers, campilers, disassemblers, debuggers, editors, word processors,
spelling checkers, data base managers, spread sheets, and accounting
packages. Just too many to list here. This catalog is another of those

~ "must have" items.

- 36 -



17.

17.

17.

17.

17

17.

17.

ST-2900 0S-9

4) D.P. Johnson
7655 S.W. Cedarcrest St.
Portland, OR 97223 U.S.A. (503) 244-8152 (9-11 am Pacific Time)

D.P. Johnson offers several packages of 0S-9 utilities, including one
which lets you read/write/format MS-DOS format disks.

5) The JBM Group, Inc.
Continental Business Center
Front and Ford Streets
Bridgeport, PA 19405 U.S.A. (215) 275-1777

JBM offers a variety of 0S-9 software such as a sort program, a data-base
manager, an ISAM (Indexed Sequential Access File Method) package, etc.
Their April "84 ad in "68" Micro Journal also said “in case of 0S-9
emergency ... call the JBM Group, the 0S-9 solution team", which sounds
1ike they offer consulting services relating to 0S-9.

6) Southeast Media
5900 Cassandra Smith Road (615) 842-4601 for information
Hixson, TN 37343 U.S.A. 1-800-338-6800 (toll free) to order

Southeast Media now claim to be the largest 68XX software distributor in
the world, with over 300 programs available for a wide variety of systems.
Recent issues of "68" Micro Journal" magazine, published by a different
division of the same company, contain a 4 page mini-catalog of software,
much of it available for 0S-9. Those of you who are running both FLEX and
0S-9 on the ST-2900 will find their "KBASIC" and "0-F" packages of special
interest, as they pemit porting of some software fram one operating
system to the other.

7) Computerware
P.0. Box 668
Encinitas, CA 92024 U.S.A. (619) 436-3512

Computerware offers a 1ine of business software, as well as an assembler,
disassembler, and other utilities.

.8) 0S-9 Users Group

P.0. Box 7586
Des Moines, IA 50322 U.S.A.

This is the "official" 0S-9 Users Group, with membership worldwide. For
an annual membership fee of ($US) $25 you get an informative newsletter

and Tow cost access ($3/disk) to an ever growing library of public damain
software.
9) CompuServe - 0S-9 SIG

The 0S-9 SIG (Special Interest Group) on CompuServe is a good medium for
exchanging problems, solutions, hints, rumours, and other ideas regarding
0S-9. qu]ic domain software is also available for downloading.

10) Radio Shack (contact your local store) - sells Microware's
language processors for BASICO9, Pascal, and C.

- 37 -



ST-2900 0S-9

18.0 Appendix H - Additional Information for Advanced Programmers

E R T Tt T T T T e e e T T T T T T T T T I T T I T 111
Bt 2t i 32 2+ 2t E 2 2 Rt e

0S-9 on the ST-2900 has a much smaller "Boot" module than most other systems
because many of the functions normally present in "Boot" are taken care of by
the "D 0C" and "D 0S" commands in the ST-MON EPROM. Of the resulting freed
memory, 256 bytes ($FEOO-$FEFF) are allocated for a data area, and for
utility subroutines to service the ST-2900"s special needs. 0S-9's direct

gage ($0000-$00FF) consequently is not cluttered up with any ST-2900 specific
ata.

18.1 Data Area

- - e - o -

The following table is presented for completeness of documentation only --
you should have little need to ever examine these values. Modifying any of
these values could have disasterous effects.

Name Addr Len Description

FEOO 24 address vector table re subroutines (described below)
FE18 105 subroutines
FE81 71 (reserved for future use)

SECSIZ FEC8 2 default size of sector for direct read/write
BEGLOG FECA 2 address of start of SDISK29's disk I/0 log (6 bytes / entry)
LOGPTR FECC 2 address of next available entry in SDISK29's disk I/0 log
ENDLOG FECE 2 address of end of SDISK29's disk 1/0 log + 1
OFFSET FEDO 2 offset between $AXXX and $FXXX addresses of ST-MON
FED2 1 (reserved)
MISTIC FED3 1 number of missed clock ticks
BORIVE FED4 1 boot drive number
DBLSTP FED5 1 boot drive double-stepping flag
~ FED6 2 (reserved)
ARTBAU FED8 1 DUART port A baud rate code at boot time
ARTLEN FED9 1 DUART port A data/parity/stop bits code at boot time
ARTACR FEDA 1 current contents of DUART's ACR register
ARTINT FEDB 1 current contents of DUART's IMR register
ARTOPC FEDC 1 current contents of DUART's OPCR register
ARTOPX FEDD 1 current values of DUART's OPO-OP7 lines
FEDE 4 (reserved)
BTADDR FEE2 2 address of boot file buffer
BTSIZE FEE4 2 size of boot file
BOOTFL FEE6 1 flag re if "Boot" module already called
FEE7 24 interrupt jump table
FEFF 1 (reserved)

The 2681 DUART chip has many write-only registers. Only one of them (OPR)
allows you to directly change one bit without affecting other bits in the
register. In order to change individual bits in the other registers, a copy
of the current contents of the register must be stored elsewhere. The code to
maintain four of these register copies and to set and clear individual bits
in those registers has been written for you.

- 38 -



ST-2900 0S-9

> **x NOTE ** The "ACR", "IMR", "OPCR", and "OPR" registers in the 2681 DUART
> should NEVER be updated directly by user programs. ALWAYS use
> one of the 7 subroutines described below.

The subroutines are accessed by means of an address table located at
$FE00-$FEL7 (including 5 entries which are reserved for future use).

Name Addr Description

DACRON FEOO set on bits in DUART ACR register
DACROF FEO2 set off bits in DUART ACR register
DINTON FEO4 set on bits in DUART IMR register
DINTOF FEO6 set off bits in DUART IMR register
'DOPCON FEO8 set on bits in DUART OPCR register
. DOPCOF FEOA set off bits in DUART OPCR register
SETOPR FEOC set bits in DUART OPR register

To call any of the first six routines, load register A with a value where
bits to be turned on or off are 1's, bits not to be changed are 0's, then do
an indirect subroutine call. For example, to turn off bits 4 and 5 in the
DUART’s IMR register:

LDA #%00110000 disable RxRDYB & TxRDYB interrupts
JSR [$FEOB]

and to turn on bit 2 in the DUART"s ACR register:

LDA #%00000100 enable delta IP2 interrupt
JSR [$FEOO]

Upon return, register A contains the new value the DUART register has just
been updated with; all other CPU registers are unchanged.

The SETOPR routine has a different calling sequence. If the data sheet for
the 2681 DUART confuses you by describing different register addresses for
setting vs resetting output bits, and even has the audacity to suggest you
remember that the output 1ines OP0-0P7 are the complement of the values in
the internal OPR register, relax! Just tell the SETOPR routine which output
lines you want changed and what the output levels should be, and it sorts out
the rest for you.

To call SETOPR, load register B with a mask re which bits are to be changed
(1=change, 0=no change) and register A with the desired output data (bits
specified as "no change" by the mask are "don't cares" here). For example, if
you want to change OP7 to "1", OP6 to "0", and OP2 to "1":

LDB #%11000100
LDA #%10000100
JSR [$FEOC]

On exit, all CPU registers are unchanged except for register A.

-39 -



ST-2900 0S-9
18.3 Hardware Usage

Most of the hardware on the ST-2900 CPU and FDC boards is already used by
0S-9. The only parts still available for your custom purposes are:

1) Three lines on the 2681 DUART chip - 0P2, IP2, IP6. However, IP2 is used
by FLEX, and the other two may be used by us in future releases of 0S-9.

2) If you are not using the supplied VIA and PL modules, the entire 6522 VIA
chip is available to you. The 6522 contains two 8 bit parallel ports
with handshaking, two 16 bit multi-mode counter/timers, and a parallel
to serial (and vice versa) shift register.

3) There is spare EPROM capacity on the CPU board. ST-MON only occupies
approx. 3K bytes, while you could install a 2764 that has a capacity of
8K bytes, leaving almost 5K bytes for your own code.

19.0 APPENDIX I - USING PC-XFER

- - - ———— o — — - T - " S e o G S M WP e WGP M M MW ST M ST NS MM MR e e me Sm S M e e e o I
2+ 3+ 534 33+t 3 2 P R el R i e

The PC-XFER utilities package from D.P. Johnson lets you read/write/format

g§-805 disks under 0S-9, and also read and write Radio Shack Disk BASIC
isks.

- The original version of PC-XFER does not completely follow the new SDISK
parameters for direct sector read and write (refer to section 10.8) because
it does not specify the sector size in register Y when calling the SDISK
routines. This parameter is not needed for double density reads and writes by
the CoCo version of SDISK, but is normally required by the ST-2900-version.

To get around this problem until a new version of PC-XFER is released, the
ST-2900"s $FEXX data area (see section 18.1) contains the 2 byte field
"SECSIZ" Tocated at $FEC8/$FECY. When the sector size parameter of the direct

read/write calls is left out (ie. is zero), SDISK29 will use the default
value specified in SECSIZ.

To read and write MS-DOS disks, use the DEBUG cammand to set SECSIZ to $0200
%512%; to read and write Radio Shack Disk BASIC disks, set it to $0100
256).

- 40 -



ST-2900 0S-9

User Feedback

1f you have any ideas that would make this package more powerful or easier to
use, please let us know soon. If you find bugs (heaven forbid!) please let us

know even sooner. Any bugs we don’t know about can't be fixed!
Any new version will be offered to existing users of this package at a very

modest charge.

1) If you discovered any bugs in the supplied software, or errors or
ommissions in this manual, describe them as precisely as possible:

2) What changes or enhancements would you like to see in this conversion
package?

3) Indicate which software packages you have tried on the ST-2900 0S-9
Conversion system, and any difficulties you may have encountered.

Return to: Sardis Technologies Phone (604) 255-4485

2261 East 11th Ave.
‘Yancouver, B.C.
Canada V5N 177

- 4] -






