
EN

UNIQUE TECHNOLOGIES

“EPRAM" EPROM Programmer

If you cannot - in the long run -tell everyone what you have been
doing, your doing has been
worthless.

— Erwin Schroedinger

A NOTE REGARDING ALL QED PROGRAMS BELOW VERSION 1.0 REVISION 2.0
The version of QED which you have received, although capable of programming
27128 EPROMS, does not contain the "EPROM" constant for this chip. This is
because the standard programming method requires almost 15 minutes to programthis very dense IC. We are currently developing a new version of QED which
will utilize modified fast programming ala Intel, allowing the same chip to
be programmed in a matter of minutes. This update package will be available
to you for shipping/handling/media charges (translate "dirt cheap"); you will
be notified when it is ready. If, in the meantime, you need to program a
27128, you may do so by inserting the "EPROM" constant in the OPT2 table. The
current value is a "null" value of 0A40; you should substitute AA4D.
Data to assist you in this procedure can be found in the ADVANCED INFORMATION
section of your EPRAM manual. You will also need to create a personality
module; the module is identical to the 2764 module, with the addition of a
strap from pin 4 to pin 15. Also, the .1 ufd capacitor is optional.
At the time revision 1 of the manual was last printed, TI was still expectedto develop and release a 2528; they later announced that the 2528 was being
scrapped. You may, therefore, ignore any information regarding 2528s ineither the program or the manual. These references will be removed in the
update package mentioned above.

Thank you for your continued support.

EPRAM EPROM Programmer

COPYRIGHT NOTICE

The entire contents of this manual and the software described herein are
protected under applicable copyright laws. The reproduction of this manual or
software by any means, either physical or electronic, is prohibited. This
restriction does not apply to normal archival or backup procedures.

WARRANTY NOTICE

This manual and the associated hardware and software are sold AS IS, without
warranty of any kind. We disclaim any warranties either expressed or implied,
including warranties of merchantability and fitness for a particular purpose.
Advertising claims made by us represent our honest opinion of the qualities
and features offered by the products described; however, determining the
suitability of the product for a given application is the sole responsibility
of the purchaser. In no event shall Unique Technologies (UNITEK) be liable
for consequential damages of any kind.

Sane states do not allow the exclusion or limitation of incidental
or consequential damages, so the above limitation or exclusion may
not apply to you. This warranty gives you specific legal rights,
and you may also have other rights which may vary from state to
state.

All sales are made subject to the terms stated above. If these terms are not
acceptable to the purchaser, then he should return this product in the
original packing. Retention of this product by the custamer shall constitute
an agreement that he has read and accepts the terms of this statement.

Unique Technologies will make every attempt to correct any errors or defects
brought to our attention, but this is only a statement of policy and not a
warranty.

Manual Revision 1

Copyright 1982, Unique Technologies PAGE 0-1

EPRAM EPROM Programmer

TABLE OF CONTENTS

INTRODUCTION «ceeeeecssosssccssosannses ceeccenneene ceeseresee «e+... SECTION ONE

GREETINGS 00060 eecoe000ccevscrs ee e000 0ees eves oe eee ecco eee ¢ ec 220000000 1-1

SOFTWARE OVERVIEW . see eo #0000000 sess cone ee ee se e00 0000000000 eo eee 1-2
HARDWARE REQUIREMENTS ® 00000000000 0600000060060060060000600600600600600006060060LE 1-2
BEFORE YOU BEGIN ee 00sec 0000000 s0s 0000s 0000s es ee 0000000000000 00600000 1-3

INSTALLATION GUIDE ® ® 0 eo 0 0 000 0 0 00 ® © 6 68 8 0 00 0 000 000 50 00 ® © © 00 0 0 0 0 00 SECTION TWO

DETERMINING THE "DELAY" CONSTANT «.ccccecscncccosssosscrssscascoaansee 2=1
METHOD #1: PRECALCULATION .c.oscecccccasocascaconncsse cecesean ee 2-1
METHOD #2: APPROXIMATION cececsescscsentscsccscesscnceses cee 2-2
METHOD #3: CALCULATION seseseveconn ceceeescnccnc ceececcnn 2-2
METHOD #4: DIRECT MEASUREMENT © ¢ccceeoooscccccsoscocccennns coos 2=2

MODIFYING THE QED SOURCE CODE ceseccs ceossessecsecsscnns ceecece 2=3

USER'S MANUAL, ® ® 0 © 0 0 © 0 OO OF OO SOO SOHC PO OO OOOO SOO POO OE 0B SOC SOS SEES SECTION THREE

ABOUT THE LV AND HV LEDS «ccevesccccsassacanses cecsecsscans|THE QED BUFFER CONCEPT ...veeccceccsscecsannesassnns cesescecns cesses 3-1
THE MATIN MENU ...cceeeeeceee ceesescenoen cecesene cescsccssensnnnne cees 3-2
RESPONDING TO ADDRESS PROMPTS cesses cess cenes seccvecese ceceans 3-3
K — TOAD BUFFER WITH CONSTANT ¢..ccctecccsosscassscnsosnnns ceseacans 3-4

— EXAMINE OR CHANGE BUFFER «cece eeeecessoossosssossssossssasasansanas 3-5
- LOAD BUFFER FROM MEMORY cece eesecteteecscs ecco aas esas ene 3-6
— RELOCATE QED PROGRAM ..ccceeecceccccssonns cescscsscosns seseeccnss 3-7
— EXECUTE DISK COMMAND ceecssesesessccccsee teste evtescsconacan 3-8
= ALTER BUFFER ORIGIN ...cocececscconas cesceesecesescecsscecsnsocne 3-9

- PROGRAM EPROM eevee er cscs s sores ee ¢e es 00 00sec 000 reese eee es soooe 3-16

XoEr<umrPoOom0 i 9 Ww|—- Oo

SOME EXAMPLES «ccceeececcccoscsscasnanasI 3-18
PROGRAMMING FROM SOURCE CODE «ec cessveesscsocscsssccssoosaasosoncescas 3-18
COPYING AN EPROM WITH CHANGES «+c cctecsscccsoscssossocssssssssssnanse 3-19
INSERTING AN EPROM ti cceeteeueseeascnasssssessscssosasssasnsasncoss 3-20
ORIENTING THE EPROM «te cceeeeoesceeesasososasonssssseasssssccsnnnoas 3-20
INSTALLING PERSONALITY MODULES «ecco vesessoescssoscsassoscaasncocasnss 3-20

PAGE 0-2 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer

ADVANCED INFORMATION «ccccceccescssccccccssssssoccccssscscssscsncnsss SECTION FOUR

THE BIRTH OF EPRAM ..cccceeoccecscoscsscccoscscsoscsscssssossscssssscsssnsscss 4-1
A WORD ABOUT OUR EPROM PIN NUMBERING ..ccccceceeccccccsscsccsncsccocs 4-1
EPRAM CONTROL: AND DATA IOGIC tt .ecceeeecceccsocsssccconcosssssccnscsnss 4-1
EPRAM VOLTAGE SOURCES «cc ccececocccccccssossscsscssssosossssccscsccnsccscss 4-2
ADJUSTING THE HIGH VOLTAGE «cc ccccecscccassecasoscscscscsscsscsncocsccnccscse 4-4
THE QED DRIVER PROGRAM .:ccccccccsscccccsccccsssssns teres cevcccessnes 4-5
PROGRAM ORGANIZATION ...ccccececccoccacscs cesesesesan sence cossornscce 4-5
THE OPT2 TABLE AND EPROM VARIABIE sesesesessscccese seccevos 4-6
ADDING NEW EPROM TYPES .c.cccceccccccnces ceescesecsessssscsstenssanee 4-7
QED PROGRAM FUNCTIONS .eccccsccccccscsccccccssccsssoscccss cecsscncacns 4-8

TROUBLESHOOTING HINTS .¢cccceeccccccsccsssocossossossossssscacsoces SECTION FIVE

LV LED DOES NOT ILLUMINATE ON SYSTEM POWER-UP OR RESETccceeeeen 5-1
LV LED DOES NOT EXTINGUISH WHEN QED IS RUN ..ccccveececcnccccacncnns 5-1
LV LED EXTINGUISHES WHEN QED IS RUN BUT SCREEN REMAINS BIANK 5-1
SCREEN DATA SCROLLS, GARBLED DISPLAYS, OR A TACKY SCREEN FORMAT 5-1
SCREEN DATA LOOKS OK BUT (SOME) INPUT NOT ACCEPTED .¢ccececcccccannes 5-2
INPUT CHARACTERS ARE DOUBLE ECHOED .cccccecccccccesscosscscccccccnans 5-2
EVERYTHING LOOKS OK BUT EPROMS FAIL TO PROGRAM .cccceeccccccccccccns 5-2
DATA READ FROM OR PROGRAMMED INTO EPROM IS REPEATED ccccccccccccccss 5-3
ONE BIT IN EACH BYTE STUCK DURING READ OR PROGRAM ...cccccceccoscccs 5-3
ABOUT SURPLUS EPROMS ...ucccecrvcececoncasnnnns cece csesseecssesscnnaans 5-3

PERSONALITY MODULES cect cceccccssscocccascscscccccsscssssssscsssscasas SECTION SIX

ALL EPROMS ARE NOT CREATED EQUAL «ccc eeeteccececcsscscscccscscsassccsncss 6-1
WHAT DOES THE PERSONALITY MODULE DO? (.veetveceececesecsncsccconnnas 6-1
DESIGNING NEW PERSONALITY MODULES .ccccccccccecccccccocscsscsocscssnscs 6-2

ALL ABOUT EPROMS ..cccceecesossscccscscsssscoscssssssssscssssscsssscs SECTION SEVEN

ALL ABOUT EPROMS? icv eeecesocacssosssecsesssssosssssssassssssasssonss 7-1
STATIC ELECTRICITY DAMAGE «cc cccocecssecsscocsscccassoscsasscccscscssns 7-1
ERASING EPROMS i. .cccecesscccoscsssccesossssssscscsssssssssccssascscsces 7-1
THE 2758 EPROM — NOBODY'S PERFECT cece eccscsscesascscscscsssasoscssns 7-2
PROGRAMMING THE 2758 ti ctccteesoeossscscssssossssscseasocscnssssosososcaes 7-3
CONVERTING TRIPLE VOLTAGE SOCKETS FOR SINGLE VOLTAGE EPROMS 7-4

APPENDIX eect eeeseseeeesssssosscsssosscasssssasesscssssscccssss SECTION EIGHT

EPROM Pin NUMDEIiNg c.veeeeeseeeceeecceascnsssecosocsasssosssssasnnnss 8-1
EPROM and RAM Pinout Chartcvieceeeserscesccasacacsesasansesansaes 8-1
EPRAM JC Orientation .oceeeeeeeeeeetoseeesseesocssocscaassasssasnasanss 8-2
Personality Module Pinoutcceeeeeeeeeocnscaceseasocsoccncsnnss 8-2
Personality Module Wiring Diagramsceeeeeeceessccesoncccnnesns 8-2

Copyright 1982, Unique Technologies PAGE 0-3

EPRAM EPROM Programmer INTRODUCTION

GREETINGS!

Thank you for your purchase of the Unique Technologies EPRAM system. We feel
that this EPROM programmer is an excellent system at a fair price, and we
hope you will agree.
This manual is your guide to the operation of the EPRAM system, and is
divided into three main sections. The INSTALLATION GUIDE explains the basic
operation of the system and (hopefully) provides enouch information for you
to easily configure EPRAM to your camputer. Although you must be able to use
an editor and assembler and be familiar with the I/0 configuration of your
computer, extensive knowledge is not required.
The USERS MANUAL provides the day-to-day information you will need to use the
EPRAM system, and includes descriptions of all the cammands. This is the
section to turn to if you are having trouble remembering syntax or need to
know how to perform a given operation.
The ADVANCED INFORMATION portion is for the true hardware and software
hackers. In this section we have attempted to provide sufficient information
for the experienced user to adapt the EPRAM system to his specific needs. Of
course, the sofware source code and hardware schematics are also supplied for
this purpose.

In addition, there are sections on troubleshooting, creating personality
modules, and EPROMs in general. It is our hope that you will find this manual
a useful reference tool.

If you have any suggestions for improvements to our EPRAM hardware or
software, or find any bugs, we would greatly appreciate hearing from you.

Happy Programming!

A NOTE OF THANKS

We often hear camplaints of microcomputer people raving about their systems
while ignoring them when it comes to "useful work". We would like to go on
record as having used our in-house SSB system and Alford and Associates’
SCREDITOR III word processor to prepare this manual; I personally cannot
imagine having done it any other way. SCREDITOR made things which would have
otherwise been impossible a piece of cake. Thanks, John, for laboring so long
over this program; it was worth every minute you put into it. And thanks to
SSB for a fine system to run it on.

Copyright 1982, Unique Technologies PAGE 1-1

INTRODUCTION EPRAM EPROM Programmer

HARDWARE OVERVIEW

The hardware of the EPRAM system is contained on one 30 pin card, which may
be installed at any available address in the host computer. A 28 pin ZIF
socket accanodates both 24 and 28 pin EPROMs. An on-board voltage tripler
develops the required programming voltages from the computer's power supply.
Unlike many “hobby type" EPROM programmers, the EPRAM system is capable of
continuous duty operation with no danger of overheating. LEDs monitor the
programming and logic voltages applied to the EPROM socket. For maximum

safety all pins of the EPROM socket are clamped to within one diode drop of
ground (about .6 volts) when an EPROM must be inserted or removed.
Personality modules are extremely simple and are built using inexpensive DIP
headers.

SOFTWARE OVERVIEW

The hardware of the EPRAM system is supported by a menu—-driven control
program called QED. This software is extremely forgiving of errors and, short
of overlaying it with data, is difficult to crash. The user is given the
opportunity to abort most commands before operations begin. All cammands are
single characters, and the return key is seldam required. Input characters
are autamatically converted to upper case so the shift key can be
disregarded. Feedback is always provided in the form of pertinent system
information, "in progress" messages, current status indicators, and full
English prampts. No data is ever allowed to scroll off the screen before the
user is ready.

HARDWARE REQUIREMENTS

The EPRAM system is flexible enough to be adaptable to most camputer
environments. However, there are certain requirements which must be met if
the system is to be installed without major modifications. Most of these
requirements may be disregarded as desired, according to the skill and
knowledge of the installer.

A disk-based 6800 or 6809 camputer with a 30 pin I/O buss and the
appropriate operating system.

An ACIA-based terminal, or any device or software which simulates an
ACIA-based terminal.

A CRT or terminal capable of displaying 24 lines of 80 upper and
lower case characters, minimum. Data should be accepted at a rate
equivalent to 4800 baud or better. The display device must support
hame cursor, clear screen, and backspace functions.

At least 6K of user memory, plus room for the data to be programmed.

Note that the EPRAM system is not a load-and—-go product, but will require
adapting to ANY system on which it is installed.

PAGE 1-2 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer INTRODUCTION

BEFORE YOU BEGIN...

Make sure you have everything you ordered. For the full EPRAM package this
includes the EPRAM board itself, a floppy disk, and the EPRAM manual. Take a
moment to look over the hardware and check for any obvious shipping damage;
also examine the disk to make sure it is not creased or crimped. You should
pay special attention to this step if you see any evidence of damage on the
outside of the package; a crushed box with half the packing hanging out is
usually a good indicator that samething may be wrong.

Also make sure you received the correct software... the right CPU, disk size,
and operating system. After all, we do make misteaks now and then.

Finally, fire up your system and make a backup copy of the disk; then PUT THE
ORIGINAL AWAY. Don't touch it again unless you destroy your copy. This is a
good habit in general and can be a lifesaver; besides, lots of companies (us
included) require that you send original disks back for updates and it's nice
to know where they all are.

Copyright 1982, Unique Technologies PAGE 1-3

EPRAM EPROM Programmer INSTALLATION GUIDE

The EPRAM system consists of both hardware and software components. While
installation of the hardware is a simple matter of selecting an I/O slot and
plugging in the EPRAM card, the QED driver software must be configured for
your system. To do this the source code supplied must be brought into your
editor and the appropriate values installed. The source will then be
assembled into the final object file.
This section provides the instructions needed for you to supply these values.
In addition to these directions you will need certain information about your
system; this data can usually be found in the manuals for your camputer and
peripherals.
One value, the DELAY constant, must be obtained before you can begin editing
the source code. The next paragraphs are therefore appropriately titled...

DETERMINING THE "DELAY" CONSTANT

The EPRAM driver software uses a time delay constant called DELAY to develop
a 50 mSEC programming pulse. This constant must be tailored to the clock
speed of your system. This is done when the software is first assembled for
your system, and needs never be modified, unless you change CPU clock speeds.

We have tried to make this process as simple as possible, and have developed
four methods to determine the correct value of DELAY. The choice of which
method to use depends on the camputer in question and the equipment
available.

Install the EPRAM board in your camputer, then power up and boot your
operating system. Using one of following methods, determine the DELAY value
for your system. Once you have obtained this constant you can proceed to the
next section.

METHOD #1: PRECALCULATION REQUIREMENTS: KNOWN CLOCK FREQUENCY

If your clock speed is known to be EXACTLY 1.0, 1.5, or 2.0 Mhz, you can use
a precalculated value. Select the appropriate value fram the table below and
jot it down, then proceed to the next section. Skip methods two through four.

If you clock speed is EXACTLY: Use this value for DELAY:

1.0 Mhz SOOFA
1.5 Mhz $0177
2.0 Mhz $O1F4

NOTE: Just because your system is SUPPOSED to be running at a given clock
speed does NOT mean that you are running exactly to frequency. If you have
not checked your PHASE 2 frequency before, this is a good excuse to do so. If
you are using an RC controlled clock, let your system run for a warmup period
before taking any measurements.

Copyright 1982, Unique Technologies PAGE 2-1

INSTALLATION GUIDE EPRAM EPROM Programmer

METHOD #2: APPROXIMATION REQUIREMENTS: DIGITAL WATCH

This method has the advantage of not requiring any equipment except for a
digital watch or clock. Assemble and run the program called SIGHT. You will
be asked for the address of the I/O slot you have selected for EPRAM, then
for a four digit timing value; you can select a starting value fram the chart
under method one. After entering this value the LV LED on the EPRAM board
will begin flashing. The goal is to adjust the timing so that the LED blinks
at a rate of exactly once per second. If the indicator is flashing faster
than this, you need a larger value for DELAY; a slower rate means you need to
decrease the value. Keep entering new values until the LED is blinking as
close to a one Hz rate as possible. (The program locks at the terminal only
after it finishes each blinking cycle, so there will be a short delay before
the first digit entered is recognized. You should key the first digit, then
wait for the program to echo it back before continuing. The last digit
entered starts the new timing cycle, so you can synchronize the LED to your
watch by keying the last digit exactly on the second.) You should ultimately
canpare the timing over a long interval, say 30 seconds or more. This method
should get you within about 2% of the exact DELAY value; since most
manufacturers specify an acceptable range of 10% for the program pulse this
is quite adequate. When you are satisfied with the results, jot down the last
number you entered, then exit the program and proceed to the next section.
Skip methods three and four.

METHOD #3: CALCULATION REQUIREMENTS: FREQUENCY COUNTER

This method requires a frequency counter, and calculates the required DELAY
value from known timing. Measure your exact PHASE 2 frequency on the buss,
and use this formula to determine DELAY:

DELAY = FREQ / 4000

Jot the result down, then proceed to the next section. Skip method four.
NOTE: The result of this calculation is in DECIMAL. All other methods result
in a HEX value. Be sure to insert the value into the program accordingly!

METHOD #4: DIRECT MEASUREMENT REQUIREMENTS: OSCILLOSCOPE

This method requires an oscilloscope. Set your scope to 2V/DIV and 10
mSEC/DIV, then connect it to the PGM and GND test points on the EPRAM board.
Now assemble and run the program called SCOPE. You will be asked for the
address of the I/O slot in which you have installed the EPRAM board, then for
a four digit timing value. This value can be selected from the chart shown
under method one. When this value is entered a pulse train will appear on the
scope. Note the time interval BETWEEN the narrow pulses. If this interval is
less than 50 mSEC you need a larger value; likewise a smaller value is
required if the time exceeds 50 mSEC. Key in new values until the positive
portion of the waveform spans precisely 50 mSec. If you can't hit it exactly,
get as close as possible. Jot down the value you last entered, then exit to
your operating system. Now proceed to the next section.

PAGE 2-2 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer INSTALLATION GUIDE

MODIFYING THE QED SOURCE CODE

Now that the value for DELAY has been determined the QED source code can be
adapted to your system. Pull out your system manuals and bring the sourcefile QED.TXT into your editor. Immediately after the opening comments youwill find the origin for the program; shortly thereafter is a section titled
USER DEFINED VALUES. This section is the portion which must be modified;
change the following values as required for your system. The values enclosed
in parentheses may be left unchanged until a later date, if desired.

(PROGRAM ORIGIN) 30100
The program origin is controlled by the ORG statement at the startof the source code. The QED program may be placed anywhere in
available memory as long as no conflicts are generated. For 6800
versions you should select a section of memory which will least
often conflict with data to be programmed into your EPROMS. (Same
users will wish to have two versions of the QED program, cne at low
memory and a second at high memory.) 6809 versions support a
RELOCATE command which allows QED to be moved to any convenient
location; in this case the ORG statement only controls the initial
load location. Select an appropriate address and insert it in the
ORG line.

EPRAM port #2 = REHOZ

This equate tells QED where you put the EPRAM board in your system
memory map. Look up the FIRST ADDRESS of the I/O slot you have
selected for the EPRAM board and key it into the EPRAM line.

ACIA port #1 = SECOL
This equate is the first address of the ACIA which talks to your
system terminal. QED talks directly to your terminal ACIA rather
than using any OS I/O routines. Look up the FIRST ADDRESS of the
1/0 slot which contains your terminal ACIA board and insert it in
the ACIA line.
NOTE: Video boards which simulate an ACIA, such as FEBE's
VIDEO-PORT, can also be used with the QED program. PIA driven
terminals and memory mapped video boards require user-supplied
interface routines. (see paqe 4-) D

RACKSP Hg
This value is the ASCII code recognized as a backspace by yourterminal. Almost all terminals use 08 (control-H) but you may change
this if required.

Copyright 1982, Unique Technologies PAGE 2-3

INSTALLATION GUIDE EPRAM EPROM Programmer

WARMON

This is your monitor's warmstart address. Unfortunately, many
monitors do not document their warmstart addresses. If you have the
source code for your monitor, you can locate the required entry
point by finding the coldstart (RESET) address, then following the
code past the point where the ACIA and stack are initialized. You
should find a location just before the monitor prompt is issued
which has a label. This should be ‘it; try it and see. If all elsefails use the coldstart address. (The warmstart address is
preferred because the coldstart resets the ACIA, which usually
interrupts the clear screen operation when exiting to the monitor.
However, this is not a critical requirement.) Enter the appropriate
address in the WARMON line.

WARMOS ECD?
This is your OS warmstart address, also known as the warmboot point.
Insert the proper address in the WARMOS line.

CDFM dDA0>
This is the address of the file manager cleanup routine in your OS.
In SSB's DOS™ this routine is called Close Disk File Manager (CDFM);
in TSC's FLEX™ it is called File Management System Close (FMS
CLOSE). Find the appropriate address and plug it into the CDFM line.

TCA CloOO
This is the starting address of the transient command area supported
by your OS. In SSB's DOS™ this buffer is called the Transient
Cammand Area (TCA); in TSC's FLEX™ it is called the Utility Command
Space (UCS). Find the appropriate address and place it in the TCA
line. This value is not required for 6800 versions of QED.

DELAY 1 MA = SOOFA
This is the adjustable delay used by the timing subroutine. It must
be adjusted to give a time inverval of 50 milliseconds when running
with your system clock. Insert the value you obtained fram the
section DETERMINING THE "DELAY" CONSTANT (Remember that the
CALCULATION method produces a DECIMAL value). If you do not know
this value go back NOW and determine it.

PAGE 2-4 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer ~ INSTALLATION GUIDE

LINES 24
This value is the number of lines available on your terminal, and is
used to center information vertically on the screen. If your CRT
displays more than 24 lines (the minimum), insert the number here.

(BUFST) $4 fond
This is the default starting location of the programming buffer. If
you have a particular area of memory you will be programming often,
you can set BUFST to the beginning of this section. BE SURE THE
BUFFER DOES NOT OVERLAP THE QED PROGRAM!

(EPROM) 271k
This value determines which EPROM type the QED program defaults to;it comes set for the INTEL 2716. If you have a certain type of EPROM

you will be programming often, you may want to preset the drivers to
default to that type. Here is the procedure:
Look a little further in the opening section of the program, until
you find a table marked OPT2. Notice that the table has an entry for
each EPROM type. Each entry is camposed of two lines. The first line
is an FCC which tells you the EPROM letter and number (For example,
the first EPROM is type A - a 2508). The second line is an FDB which
indicates the control number. Scan down the table and find the
default chip you want. Now refer to the number on the next line.
Insert this number as the EPROM value.

HOMCLR $12
This the sequence of ASCII characters which must be sent to your
terminal to make the cursor move to the upper left corner and clear
the screen. Almost all terminals, no matter how stupid, support the
home and clear function. You can find this in the documentation for
your terminal. Insert the required characters in the HOMCLR line
seperated by cammas, then add a null (00) at the end. You may use as
many characters as required for your terminal, just be sure to
remember the 00 at the end!

These are the only adjustments required unless you are using a system which
does not meet the minimum requirements mentioned earlier. (If this is the
case, you may have to modify QED considerably; it is up to you to know what
you are doing!) Otherwise save the edited file and assemble it using the name
of your choice (for example, PGM.$ for SSB's DOS™ or PROGRAM.CMD for TSC's
FLEX™). If your file assembled properly, you are ready to begin learning your
way around the EPRAM system. This is your cue to turn to the next section.
See you there.

Copyright 1982, Unique Technologies PAGE 2-5

EPRAM EPROM Programmer USER'S MANUAL

At this point you should have a functional EPROM programner.
(Congratulations!). In this section we will familiarize you with the basic

operation of the system. If during the course of your initial explorations
the results you get don't match what is listed here, you may wish to turn to
the troubleshooting section.

ABOUT THE LV AND HV LEDS

The EPRAM board has two indicators marked LV and HV. LV stands for Low
Voltage, and refers to the five volt logic supply to the EPROM socket. This
supply is controlled by the driver program, and is turned off whenever the
EPROM is not being accessed. At the same time the LV supply is turned off,
QED clamps all of the pins on the socket to logic zero, which means they are
within about one diode drop (or .6V) of ground.

The HV indicator monitors the High Voltage (programming voltage, or Vpp) for
the socket. This voltage can be either 21 or 25 volts, depending on the type
of EPROM being programmed. Again, this supply is controlled by the QED

program.

Together the LV and HV LEDs monitor the status of the EPRAM hardware. With
both indicators extinguished all lines to the socket have been clamped near
ground and it is safe to insert or remove an EPROM, or change personality
modules. (NEVER change EPROMS or modules unless BOTH of these indicators are
extinguished! Although it is possible to get away with this, you will run the
risk of damaging your EPROM.) When the program is accessing the EPROM for a
read operation, the LV LED cames on. Both LEDs illuminate when a programming
operation is in progress. The main thing to remember is never to fiddle with
the EPROM or personality module unless both lights are OUT.

Now, if you will bring power up on your system you will notice that the LV
LED illuminates. This is the normal noninitialized condition, and indicates
that the card is receiving power. This state occurs any time the computer is
turned on or a reset is applied.
Now run the QED program which you previously assembled (remember section 27).
Two things should happen immediately after the program finishes loading.
First, you should see the LV LED extinguish; second, the screen should £ill
with the main QED menu.

THE QED BUFFER CONCEPT

One idea needs to be expanded upon before we begin discussing the menu. QED
makes extensive use of a data area called the BUFFER; this is an area of
memory which represents the EPROM being operated on. It is always the same
size as the EPROM type selected, and exhibits a one-to-one relationship with
it. (Thus the first memory location in the buffer corresponds to the first
location of the EPROM, the second to the second, etc.) In fact, if the
default programming options are selected, the EPROM will be programmed as an
exact copy of the buffer area.

Copyright 1982, Unique Technologies PAGE 3-1

USER'S MANUAL EPRAM EPROM Programmer

The buffer is maintained by the system for your convenience. Many commands
require memory values before they can function, and in most cases the default
limits representing the buffer can be used. Except for commands dealing
directly with the EPROM you may select any limits convenient for your
application; even limits outside the buffer area are acceptable. (Commands
which read from or write to the EPROM calculate the chip addresses directly
fram the buffer addresses used. It is not possible to operate outside the
buffer area with these cammands.) |

Playing with the buffer is one of the few ways you can get in trouble with
QED. For example, it would be disasterous to place the buffer over QED, then
load the contents of the EPROM into the buffer! Likewise, ignoring limits
when writing to the buffer allows you to do all sorts of wonderful things,
like overwriting your entire operating system with $3F's. QED will let you
know when it senses impending doam, but DOES NOT STOP YOU from pulling the
trigger. It is your responsibility to know what you are doing.

THE MAIN MENU

Now to the program. Your screen should be displaying a menu that looks
samething like this:

'EPRAM' EPROM Programmer Master Menu Copyright 1982 - Unique Technologies

680x Ver x.x, Rev Xx.x — EPROM type D: 2716 INTEL - Buffer $8000 to $87FF

Load buffer with constant
Examine or change buffer

Load buffer from memory
Relocate this program
Execute disk command
Alter buffer origin

Hex dump of buffer
Select EPROM type

n@mPUOOITIONR

Verify EPROM programmed
Load buffer fram EPROM

Verify EPROM erased
Program EPROM

tHE

<

Exit to monitor
Exit to OS

0»

Please select desired option:

PAGE 3-2 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer : USER'S MANUAL

The top line is composed of the menu title and the typical copyright blurb.
The second line is considerably more interesting. It contains —— reading from
left to right — the program version and revision numbers, the EPROM type
selected, and the current buffer limits.

This menu gives you complete control over the EPRAM system. A single
keystroke is all it takes to get you into any of the commands provided, and
by cambining commands several other functions are available. The remainder of
this portion of the manual is devoted to detailed descriptions of these
commands and their use. You are encouraged to tinker with the commands as
they are presented; about the only damage you can do is crash your system.
But first...

RESPONDING TO ADDRESS PROMPTS

Most cammands need an address or a pair of addresses to operate. Only valid
hexadecimal digits are accepted; all other information is flagged by the
terminal bell and rejected. All operations move fram the beginning value to
the ending value inclusive, and consider memory to be a closed loop (that is,
SFFFF is followed by $0000). Thus using $8000 to $8002 (which will operate on
three addresses) is NOT the same as using $8002 to $8000 (which would operate
fram $8002 through $FFFF, continue through $0000 and end at $8000!) If you
select limits which are hazardous to the QED program itself, it will warn you
by displaying the message "WARNING: Limits overlap program!".

Since the addresses desired will often be the buffer limits, QED provides a
special W option which autamatically inserts the appropriate value(s). W

stands for Whole, and means you intend to use the whole buffer for your
operation, or that you wish to start the operation at the beginning of the
buffer. The K, C, M, H, V, L, E, and P commands all support the W option.

The requested addresses can usually be whatever values are convenient, and
need not involve the buffer at all. However, the V, L, E, and P cammands are
exceptions to this rule. These commands deal with the EPROM and the addresses
relate directly to it. Attempting one of these commands outside the
prescribed buffer area would make no logical sense, and will generally only
cause problems. These commands are seperated in the menu to remind you of
this.
The K, M, R, V, L, E, and P functions give you a chance to skip out before
operation begins. This is because most of these commands are potentially
hazardous to memory or EPROM contents if incorrect information is passed to
them. Also, there is no way to backspace or correct an entry once it is keyed
in, so the abort function is essential. If you make an error when entering an
address or data, you should key anything valid (all zeroes, for example)
until the continue prompt appears, then abort and restart the command. (This
is not as cumbersome as it sounds, since few keystrokes are usually
involved.) The C, A, and H commands do not support the abort function since a
minimum of information must be reentered if an error occurs.

Now, on to the commands!

Copyright 1982, Unique Technologies PAGE 3-3

USER'S MANUAL EPRAM EPROM Programmer

K —- LOAD BUFFER WITH CONSTANT

This command allows you to set any section of memory to a constant value.
When a K is entered QED prints a banner to indicate which mode you are in,
followed by a line showing the current starting and ending locations of thebuffer. (This is the standard format which most QED commands use.)
You are then asked for the first address which you want to set to a constant
value. This location can be ANY ADDRESS in your entire system memory map,
although it will usually be within the limits of the buffer area. (The
question is worded to remind you of this.) Alternately you can specify the W
option, which autamatically sets the cammand to use the entire buffer area.
Next you must insert the last location you wish to set to a constant value.(If you used the W option in response to the beginning address question the
ending value is preset and this question will be skipped.) Again, this value
can be any location in your address space.

Finally, you are asked for the hex value you wish to insert in the block youhave specified.
As an example, the following exchange will set the block of memory fram $9000
to $9FFF to $3F's:

LOAD BUFFER WITH CONSTANT

Current buffer location $0000 to $O7FF
Beginning buffer location (or W)? 2000
Ending buffer location? 9FFF
Value to be inserted? 3F

You may now C)ontinue or A)bort. C

Note that the area of operation was entirely outside the buffer limits; thisis completely legal. For another example consider the following, which will
clear the buffer area:

LOAD BUFFER WITH CONSTANT

Current buffer location $0000 to SO7FF
Beginning buffer location (or W)? W
Value to be inserted? 00

You may now C)ontinue or A)bort. C

Note that the ending location prompt was not given, since the W option was
selected.

PAGE 3-4 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer USER'S MANUAL

C - EXAMINE OR CHANGE BUFFER

This command allows you to freely move through memory, examining and perhaps
changing data in individual memory locations.
After the standard banner is printed, QED asks for the first address you wish
to examine. If you want to begin at the first location of the buffer, you can
specify the W option rather than an address.
Next the screen will clear and a prompt line will be displayed. Immediately
below this line is displayed the selected address, followed by the contents.
At this point all the options listed in the prampt line are available. For
example, to move to the next sequential memory address, hit the space bar.
Likewise, a minus sign will move you back one memory location. Hitting the N
key will cause QED to display the prampt "Address?", at which time you may
enter a campletely new address to examine. The Q key will return you to the
main menu.

Finally, you may alter the data in the current location by entering its new
value. You may do this either by entering any valid hexadecimal value, or by
entering an apostrophe (') followed by an ASCII character. QED will convert
either entry to binary and place it in the current memory location, then
advance to the next address. If an attempt is made to write data to a ROM or
a read or write only register, a question mark will be printed immediately
after the data to indicate it was not read as written.
As data is entered the cursor will move down the screen until the bottom is
reached. At this point data on the CRT will begin scrolling upward each time
a new line is printed. Since this means the prompt line indicating your
options will scroll off the top of the screen, a new one will autamatically
be displayed at the bottom.

The following example illustrates the use of the C cammand. All information
in parenthesis are camments and not generated by QED.

EXAMINE OR CHANGE MEMORY

Current buffer location $8000 to S$87FF
Beginning buffer location (or Ww)? 8315

SPACE = forward MINUS = back N = new address Q = quit VALUE

8315 41 (User types a space and advances location)
8316 00 4C (User modifies data and advances location)
8317 7E - (User types a minus to see modified data)
8316 4C Address? 8640 (User types N followed by a new address)
8640 41 'G (User enters ASCII data and advances location)
8641 43 'O (User enters ASCII data and advances location)
8642 OD (User enters Q to quit; returns to main menu)

Copyright 1982, Unique Technologies PAGE 3-5

USER'S MANUAL EPRAM EPROM Programmer

M - LOAD BUFFER FROM MEMORY

This mode allows you to move blocks of data from one area in memory to
another. Any size block of memory may be moved to either a higher or lower
range of addresses, and the destination block may even overlap the source
block. QED autamatically determines how to copy the information so that no
data will be lost.
After the standard banner is printed, QED asks you for the first buffer
address you wish to work with. Since we would normally speak in terms of
moving memory TO the buffer, this prompt refers to the start of the
DESTINATION block, not the source. If you wish to move a block of memory
which will fill the entire buffer, you can use the W option.
Next you should enter the last address of the destination block. This step is
not necessary if you used the W option.
The final step is to key in the first address of the source block. QED will
calculate the size and ending location of the source block autamatically.
For example, suppose it is necessary to copy a large program into several
smaller EPROMs. You can do this by copying EPROM-sized blocks of information
to the buffer and programming one chip at a time. The exchange below will
copy the first block of information, residing from $4000 to $47FF, to the
buffer.

LOAD BUFFER FROM MEMORY

Current buffer location $0000 to $O7FF
Beginning buffer location (or W)? W

Beginning source location? 4000

You may now C)ontinue or A)bort. C

Although it may seem confusing at first to specify the move in terms of the
destination rather than the source, you will find that in most cases this
works well, since you will be concerned with what information will fit in the
EPROM rather than the limits of the source.

PAGE 3-6 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer USER'S MANUAL

R — RELOCATE QED PROGRAM

This command allows you to move the QED program to any area of user memory.
The move may be in either direction, and the new program may overlap the old
copy if required. THIS COMMAND IS SUPPORTED ONLY IN THE 6809 VERSIONS OF QED.

QED responds to the R command by displaying the current locations of the
buffer and program. It will then ask you for the new starting location for
the program. Since QED would normally be relocated to move it out of the way
of new data which is to be loaded in, no check for buffer overlap is made.

Due to the way QED handles the relocation, you do not have to be concerned
about whether the new location overlaps the old program, or in which
direction you are relocating. However, you should be conscious of yourdestination and any data you might destroy. Also, attempting to relocate QED
to non-existent memory or ROM would be disasterous.
The following example shows the QED program being moved from its default load
location to a block starting at $4000, perhaps to make room for data which
must load at $0000.

RELOCATE QED PROGRAM

Current buffer location $8000 to $87FF

Program is located from $0000 to $162C
New program start? $4000

You may now C)ontinue or A)bort. C

Copyright 1982, Unique Technologies PAGE 3-7

USER'S MANUAL EPRAM EPROM Programmer

D - EXECUTE DISK COMMAND

The D command provides an interface to the computer's operating system, and
allows you to execute most OS cammands.

In response to the D command, QED will clear the screen and print a banner
indicating that it still has control. Immediately below will be displayed
your operating system prampt; at this time you may enter any operating system
command exactly as you normally would. The cammand will execute, then the
prampt "Hit any key to continue" will be displayed. QED returns to the main
menu when any character is entered in response.
Caution should be exercised when using this cammand. While most OS commands
execute in a dedicated "transient command area", some are too large to fit,
and reside in other portions of memory. If a command were to load or execute
over the buffer you could lose valuable data; if the QED program itself were
overlayed your system would crash as soon as the OS command finished
execution.

The D command has a wide range of uses, such as examining disk directories,
loading and saving binary files for programming, debugging program segments,
etc. The example below shows a directory listing on an SSB system.

Executing DOS command under control of QED

DOS: DIR,1/L

FILENAME PROT FT FS BTBS ETES SIZE FILENAME PROT FT FS BTBS ETES SIZE

COPY .$§ L BS OK 814A 8153 10 EPRAM9.S L BS OK A64D C44C 23
EPRAMO.TXT DW CS OK 8655 A64C 177 SCOPE9.S$ BS OK AO4F A050 2
SCOPES.TXT DW CS OK A043 AO4E 12 SIGHT9.S BS OK A747 A748 2
SIGHT9.TXT DW CS OK A655 A746 12 TRANSF.TXT CS OK A841 A842 2

8 files total, using 2 to 177 sectors each. 250 sectors used, 1748 free.
Hit any key to continue.

PAGE 3-8 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer USER'S MANUAL

A - ALTER BUFFER LOCATION

The A command allows you to move the buffer to any location in your system
memory map.

QED responds to this comand by displaying the current buffer limits and
asking where you wish the new buffer to start.
By using this command it is possible to move the buffer to the data, rather
than moving the data to the buffer. It also allows several otherwise
impossible operations, such as loading the contents of the EPROM to any block
of memory.

It is entirely possible to move the buffer to a position which partially
overlaps or totally engulfs the QED program itself. Since QED makes no
assumptions about what you are trying to do, no warning is given. However,
any mass—change operation (K, M, L) attempted on the buffer after this point
will elicit the message "WARNING: Limits overlap programl".

The following example shows the buffer being moved from $8000 to $A000:

ALTER BUFFER LOCATION

Current buffer location $8000 to $87FF
New buffer start? $A000

Copyright 1982, Unique Technologies PAGE 3-9

USER'S MANUAL EPRAM EPROM Programmer

H - HEX DUMP OF BUFFER

This command generates a HEX/ASCII page dump of any section of memory.

QED will respond to the H command by displaying the current buffer limits,
then asking where you wish to start the dump. If you wish to begin at the
first page of the buffer, you may use the W option.

At this point QED will clear the screen and begin the dump by displaying the
memory page which contains the address specified. THE DUMP ALWAYS BEGINS AND
ENDS ON PAGE BOUNDIES. Thus if you specified location $8143, QED would dump
$8100 to $81FF. This method was found to be superior to the standard practice
of starting and ending wherever specified; rather than having to count bytes
to find a given address, the QED page dump command ALWAYS displays each byte
of a page in exactly the same location, with full address pointers.
The dump is displayed in a fairly standard format, with an ASCII
representation of the data to the right of the HEX display. Values without
printable ASCII equivalents are represented by a period.

Below the dump is an options list and prompt. For your convenience, the
option mnemonics are identical to those used in the C command. The space bar
moves the display forward to the next memory page, and the minus key moves
the display back to the previous page. Entering an N causes QED to prompt for
a new dump address. Alternately, you may enter the address directly without
using the N key (this is the meaning of the VALUE prompt).

As an example, the following exchange shows a user dumping two pages. To
conserve space only the first and last lines of each dump are shown.

HEX DUMP OF BUFFER

Current buffer location $8000 to $87FF
Beginning location (or W)? W

01 23 456 78 9ABCTUDEF
8000 13 15 14 20 12 11 10 07 08 07 04 04 04 00 00 00 «cc ceoccccoass .
80F0 7E EA B3 7E EA 5C 7E E8 06 7E E8 06 OB 11 50 03 ~..7.\"..7....P.
SPACE = forward MINUS = back N = new address Q = quit VALUE 4327

01 2 3 45 6 78 9A BCDEF
4300 SF 1C FE 39 7F DE 49 E6 03 C1 03 22 D3 8EDE 30 _..9..I...."...0
43F0 84 30 44 44 44 44 BE DE 38 C6 04 8D 11 35 02 84 .0DDDD..8....5..

SPACE = forward MINUS = back N = new address Q = quit VALUE Q

PAGE 3-10 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer USER'S MANUAL

S - SELECT EPROM TYPE

This cammand is used to configure QED for the desired EPROM type.
In response to this cammand, QED will clear the screen and display the second
of its two menus, which looks samething like this:

EPROM Selection Menu Copyright 1982, Unique Technologies

680x Ver x.x, Rev x.x — EPROM type D: 2716 INTEL - Buffer $8000 to $87FF

8K EPROMS (1K BYTE) 16K EPROMS (2K BYTE)

A 2508 TI C 2516 TI
B 2758 TI/INTEL D 2716 INTEL

32K EPROMS (4K BYTE) 64K EPROMS (8K BYTE)

E 2532 TT H 2564 TI
F 2732 INTEL I 2764 INTEL
G 2732A INTEL

128K EPROMS (16K BYTE)

J 2528 TI
K 27128 INTEL

SELECT DESIRED EPROM:

This menu displays a camplete list of all the EPROM types programmable by the
EPRAM system, and assigns a letter to each one. To select the desired EPROM,
simply locate it on the menu and enter the associated letter. The main QED
menu will return with the new EPROM type listed in its header, and the buffer
limits adjusted accordingly.
Note that each EPROM is followed by either TI or INTEL. Due to a rather
involved situation early in the EPROM saga, quite a bit of confusion was
generated by the numbers manufacturers assigned various EPROMs. For example,
INTEL and TI produced identical triple voltage 2708s and single voltage
2758s. However, INTEL's 2716 is a single voltage EPROM, while TI's 2716 is a
totally incompatible triple voltage version! (TI's number for a single
voltage 2K byte EPROM is 2516.) Thus it became imperative for a time to
mention not only the chip number but the manufacturer, to be sure you and the
distributor were both talking about the same chip!

Copyright 1982, Unique Technologies PAGE 3-11

USER'S MANUAL EPRAM EPROM Programmer

Manufacturer's literature will usually equate their EPROMs to one of these
two (I.E., "Compatible with INTEL 2716") when referring to pinout and
programming requirements. By using this data it is possible to program almost
anyone's EPROM, simply by selecting the appropriate equivalent in the EPROM
selection menu.

Also, it should be mentioned that several of the chips listed are identical
as far as QED is concerned. For example, the 2732 and 2732A are both
programmed in exactly the same way. However, for the sake of campleteness and
esthetics we have assigned each EPROM its own letter in the menu.

Finally, remember that SELECTING AN EPROM BY THE MENU IS ONLY HALF THE JOB.
The menu selection sets up the QED software properly, but you must also
insert the appropriate header in the personality module socket to configure
the EPRAM hardware.

PAGE 3-12 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer USER'S MANUAL

V — VERIFY EPROM PROGRAMMED

The V cammand causes QED to campare the contents of the buffer with the
contents of the EPROM and report any mismatches.

In response to the V entry QED will display the current buffer limits, then
ask you for the first location you wish to verify. THE EPROM ADDRESSES ARE
DIRECTLY RELATED TO THE BUFFER ADDRESSES GIVEN. VERIFICATION SHOULD NOT BE
ATTEMPTED OUTSIDE THE BUFFER AREA. If you wish to verify the entire EPROM
against the buffer, you may use the W option.
Next QED will ask for the last location to verify. Again, this address should
be within the buffer limits. This prompt will not be displayed if you used
the W option previously.
QED then examines each buffer location within the limits specified, camparing
the contents with the corresponding locations in the EPROM. During this
process the banner "Verification in progress" will be displayed (although it
may remain on the screen for a very short time). If the contents of the
EPROM agree with the data in the buffer you will be returned to the main menu
without comment. If an error is encountered the terminal bell will be
sounded and the message "Verify error at buffer address $XXXX, expected $YY,
read $ZZ" will be displayed. XXXX is the buffer address where the mismatch
was found, YY is the data in the buffer QED was expecting, and ZZ is the data
actually read from the EPROM. At the end of a verification with errors the
data will remain on the screen and the message "Verification campleted.
Errors detected. Hit any key to continue" will be displayed. Touching any keywill return you to the main menu. If more errors are detected than will fit
on the display, the message "Verification failed. Operation terminated. Hit
any key to continue" will be displayed; again, touch any character to restorethe main menu.

The following example shows the second half of a 2K EPROM being verified
against the buffer, with no errors resulting:

VERIFY EPROM PROGRAMMED

Current buffer location $8000 to S$87FF
Beginning buffer location (or W)? 8400
Ending buffer location? 87FF

You may now C)ontinue or A)bort. C

Copyright 1982, Unique Technologies PAGE 3-13

USER'S MANUAL EPRAM EPROM Programmer

L - LOAD BUFFER FROM EPROM

This cammand allows you to copy the contents of the EPROM to the buffer area.

After the standard banner is displayed, QED asks for the first buffer address
to operate on. THE LIMITS SPECIFIED FOR THIS COMMAND RELATE DIRECTLY TO THE
EPROM BEING OPERATED ON, AND SHOULD BE CONFINED TO THE BUFFER AREA. It is not
possible to load the EPROM into memory outside the buffer area. To do this
you must move the buffer (see the A cammand). To copy the entire EPROM to the
buffer you can use the W option.
Next you should enter the last address to operate on. REMEMBER THAT THIS
VALUE SHOULD BE WITHIN THE CONFINES OF THE BUFFER. If you selected the W

option this question will not be asked.

As an example, the following dialogue will move the SECOND HALF of a 2K byte
EPROM into the corresponding section of the buffer:

LOAD BUFFER FROM EPROM

Current buffer location $0000 to $O7FF
Beginning buffer location (or W)? $0400
Ending buffer location? $7FFF

You may now C)ontinue or A)bort. C

Note that there is no specification as to what portion of the EPROM is to be
moved to memory; this information is implied in the buffer values given.
Remenber that all commands dealing directly with the EPROM exhibit a
one-to—-one relationship between the buffer and the EPROM addresses.

PAGE 3-14 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer USER'S MANUAL

E - VERIFY EPROM ERASED

This command checks the section of EPROM specified to make sure it is
properly erased.

QED responds by displaying the current buffer limits, then asking for the
first location you wish to verify. THE EPROM ADDRESSES ARE CALCULATED FROM
THE BUFFER ADDRESSES GIVEN; YOU SHOULD NOT ATTEMPT A VERIFICATION OUTSIDE THE
BUFFER ARFA. If you which to verify that the entire EPROM is erased, you may
use the W option.

Next QED asks for the last address you wish to verify. Again, this value
should be within the buffer area. If you used the W option previously, this
prampt will not be displayed.
QED examines all EPROM locations within the limits specified, checking to see
that each address contains an $FF. (SFF is the normal "unprogrammed" state of
all UV eraseable EPROMS). During this time the banner "Verification in
progress" will be displayed (although possibly for a very brief period!). If
no programmed locations are found, you will be returned to the main menu
without comment. If an error is located, the terminal bell will sound, and
the message "Verify error at buffer address $XXXX, read $ZZ" will be
displayed. XXXX is the buffer address corresponding to the EPROM location
where the error was found, and ZZ is the data read fram the EPROM. At the end
of a verification with errors the data will remain on the screen and the
message 'Verification ocampleted. Errors detected. Hit any key to continue"
will be displayed. Touching any character on the keyboard will return you to
the main menu. If more errors are detected than will fit on the display, the
verification process will be aborted, and the message "Verification failed.
Operation terminated. Hit any key to continue" will be displayed; again,
touch any character to restore the main menu.

As an example, the following exchange will verify an entire EPROM to be sureit is properly erased:

VERIFY EPROM ERASED

Current buffer location $8000 to $87FF
Beginning buffer location (or W)? W

You may now C)ontinue or A)bort. C

Copyright 1982, Unique Technologies PAGE 3-15

USER'S MANUAL EPRAM EPROM Programmer

P - PROGRAM EPROM

The P cammand allows you to program an EPROM with any portion of the buffer
contents (which after all is what this is all about, right?).
QED responds to the P command by displaying the current buffer limits, then
asking for the first location you wish to program. THE EPROM ADDRESSES ARE
DETERMINED FROM THE BUFFER ADDRESSES AND SHOULD BE CONFINED TO THE BUFFER
AREA. If you wish to program the entire EPROM you can use the W option.

Next you should supply the last address you wish to program. Again, this
value should be within the limits of the buffer. If you used the W option as
your response to the beginning address question this prompt will not be
displayed.
The programming process is a time-consuming procedure. Each location of an
EPROM requires a 50 millisecond pulse to program, so with a 2K byte chip this
is a minimum of about 1.7 minutes, not including program overhead. To assure
you that your camputer has not crawled off into a corner and quietly died,
QED displays a banner showing the current address during the programming
process. The addresses are incremented by sixteen with the least significant
nybble zero, and refer to the buffer values.

After the programming phase is completed, QED autamatically performs a V
camand - verify EPROM programmed — on the programmed section. If no errors
are detected you will be returned to the main menu without comment; otherwise
the errors will be displayed as explained in the V command description.
The following example programs an EPROM with the contents of the buffer:

PROGRAM EPROM

Current buffer location $8000 to $87FF
Beginning buffer location (or W)? W

You may now C)ontinue or A)bort. C

PAGE 3-16 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer USER'S MANUAL

X - EXIT TO MONITOR / Q - EXIT TO OS

These two cammands are used to exit the QED system. The X cammand hands
control to the system monitor (usually a low-level debugger and I/O processorsuch as MIKBUG), while the Q command returns to the operating system.
The X command may be used to "get out of" QED to perform some rudimentary
function prior to programming an EPROM. When the X key is hit, QED will home
the cursor and clear the screen. Your monitor prompt should then appear in
the upper left corner of the display.
The Q command is normally used to exit QED when a programming session has
been campleted. Alternately, in cases where you have a large number of OS
functions to execute and typing the D command before each would be awkward,
you could instead skip out of QED, perform your operations, then re-enter.
Same OS's save the last transient vector used, and with these you can restart
QED by performing a simple "GO" command or equivalent; otherwise, a "jump to
address” command will be required. (This of course assumes QED was not
destroyed by any of your OS cammands, or relocated from its original load
position.)

Copyright 1982, Unique Technologies PAGE 3-17

LoAdo

FILE.BIN,

1,
8

DOD

USER'S MANUAL EPRAM EPROM Programmer

SOME EXAMPLES

Now let's run through a couple of sample sessions to help give you a feel for
the operation of the system. In both examples we will define a problem
and present one of the ways it can be dealt with. We will assume that EPRAM

is installed on an SSB DOS based system, QED was assembled with an ORG of
$0000, the default buffer starts at $8000, and the default EPROM is a 2716.

PROGRAMMING FROM SOURCE CODE

Let's assume you have a program named UCT.BIN that you are sick and tired of
loading into RAM and want to blast into EPROM once and for all. You have a
slot open for a 2716 at $E800 to $EFFF, and the program will fit nicely in 2K

of space. You have the source code.

The first steps are really outside the realm of this manual, but should be
pointed out at least once. First of all, make sure the program is ROMable.
This means no self modifying code, no variable storage in the middle of the
program, etc. The safest method for variables is to store them on the stack,
although you can use scratch RAM when available.

Next assemble a version of the program ORG'ed for the destination (in this
case, SE800); the resulting object file will be stored on disk.
Now you have a choice of running QED or moving the binary file into memory
first. If you run QED, use the D cammand before the next step.

At this point you have a nice tidy binary file ready to load at,
unfortunately, SE800. Since it must be moved to RAM it will have to be loaded
with an offset. The QED buffer can be placed anywhere, so let's pick an
simple offset. One fact which is easy to remember is that adding $8000
inverts the MSB of an address; thus $E800 would became $6800, a very useable
(and for same reason particularly charming) address. So, let's load the
binary file with an $8000 offset. Your OS file loader would be used here.

Now you can move the buffer fram its default load location to the data using
the A command. (Alternately, you could have calculated the offset so the data
loaded exactly into the buffer area, or you can use the M cammand to move the
file to the buffer once it is loaded.) Since the program was assembled to run
in EPROM, no further manipulation is required.

The EPROM being used happens to be the default type, so you do not need to
use the SELECT EPROM option. However, if you work with more than one type of
chip, it would pay to make sure you have the right module installed on the
EPRAM board.

Now you should insert the EPROM in the programming socket, being sure to
remember the orientation rules (chip all the way to the left, pin one in the
upper right corner). Then you might want to verify that the EPROM is erased
before continuing; you would use the E command here. After this there is
nothing left but to program the EPROM (command P).

PAGE 3-18 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer USER'S MANUAL

COPYING AN EPROM WITH CHANGES

In this example, you have a 2732 EPROM containing a monitor program you would
like to use. Unfortunately, it uses the wrong I/O address. You have
disassembled enough of the object to know that all the references are made
through one constant, and that simply changing that value will do the trick.
The first step is to load QED, so the EPROM socket will be made safe for
the insertion of the EPROM.

Now you can insert the EPROM to be copied into the EPRAM board socket.
(Alternately you could place it in an empty socket in your system somewhere

and move the buffer to that location. This would eliminate the read-in step.)

At this point it is necessary to tell your programmer that you are not using
the default 2716 chip. Configure the EPRAM board by removing the 1-2K
personality module and inserting a 2732 unit. (See the section on personality
modules for more information). Don't forget to use the S command to tell QED
about the new chip also.
The next step would be to move the contents of the EPROM to be copied into
the buffer, using the L command. After this step you can make whatever
changes are required to the data in the buffer with the C cammand. (You can
also use the "D" command with your OS to save a copy of the code in a disk
file for later use).
Now the buffer is ready to be programmed into a new EPROM. Remove the
original EPROM fram the EPRAM socket and substitute a new one. As in the
first example, it is a good idea to make sure the new chip is campletely
erased, using the E command. And now you are ready to program once again,
using command P.

Multiple copies could be made, simply by continuing to insert blank EPROMs

and repeating the verify erased and program commands.

Copyright 1982, Unique Technologies PAGE 3-19

USER'S MANUAL EPRAM EPROM Programmer

INSERTING AN EPROM

Now that we've covered the cammands, let's discuss the hardware again for a
moment. Near the top of the EPRAM card is the ZIF EPROM socket. ZIF stands
for Zero Insertion Force, which means that you never have to worry about bent
pins and such when plugging in your EPROMs. Notice the little lever on the
upper right hand corner of the socket; it has two functions. One of them
deals with the socket itself. When this lever is in the "UP" or "OUT"

position, the socket is open. To insert an EPROM, place it in the socket with
the lever in the UP position. Now, while holding the EPROM in place flip the
lever to the "DOWN" or "IN" position. This locks the EPROM in place, and you
probably couldn't get it out now if you wanted to. To remove the chip, place
a thumb on the EPROM or place your hand under it (because when you release
the lever it will literally fall out) and flip the lever back to the UP

position.

ORTIENTING THE EPROM

Yes, we did say the lever has two purposes. The other one deals with the
orientation of the EPROM. You may have noticed that the socket has 28 pins,
whereas the majority of EPROMs have 24. This means that, out of six possible
ways to insert the smaller chips, five are wrong (which is not as many ways
as there are to insert a disk incorrectly)! This is where the lever cames in;
it indicates the corner of the socket in which you should place pin one of
your EPROM. Also notice that a small arrow is printed on the printed circuit
board under the opposite end of the socket. This arrow is a reminder that 24
pin EPROMs should always be seated as far to that end of the socket as
possible.
In other words, always place an EPROM in the socket as far to the left as
possible, with pin one in the upper right hand corner, near the lever. See
the diagram in the appendix for more information.

INSTALLING PERSONALITY MODULES

Immediately below the EPROM socket is a sixteen pin socket marked
"PERSONALITY MODULE". This is where, by coincidence, you insert the
personality module for the EPROM you are programming. Pin one of the module
is placed in the upper right hand corner of the socket, exactly as with the
EPROM (in fact, ALL ICs on the EPRAM board plug in with the same
orientation.) Pin one is also marked on the circuit board as a small dot.

To save expense, and because the module will not be changed as often as the
EPROM, an ordinary socket is used here. You should therefore use a certain
amount of caution when inserting a module, so as not to damage the pins.

PAGE 3-20 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer ADVANCED INFORMATION

You're probably here because you want some specific technical information.
Well, this is the place to be. Be warned, though, that this section simply
presents the facts; you will have to decipher them for yourself!

THE BIRTH OF EPRAM

The EPRAM programmer was originally designed for in-house use on several of
our own projects. We wanted a programmer which was versatile enough to
program any of the single voltage chips we might have to use. Triple voltage
EPROMs we dismissed, since they will not be included in any new designs. (In
fact, even the relatively old SWIPC MP-A2 used single voltage 2516s!) The
thought foremost during the development was to make the hardware as simple
and inexpensive as possible, using readily available parts. When the project
was campleted we realized that out little proto-kluged programmer could do
most of what the $200 plus machines could do, at a fraction of the cost. The
typical "better mousetrap" fever caught us, and we moved EPRAM into
production.

A WORD ABOUT OUR EPROM PIN NUMBERING...

Fortunately for EPROM users, the manufacturers were able to agree on a
certain amount of standardization for pin useage. In fact, when chip density
became too great for a 24 pin package, manufacturers kept the old EPROM

pinout, simply adding four pins at the top of the package. Thus pin one on a
24 pin EPROM serves the same purpose as pin three on a 28 pin package, pin 24
is the same as pin 26, etc. See the diagram in the appendix for more
information.

To avoid the double pin numbering made necessary by this change, we have
developed a simple system for referring to EPROM pin numbers, and use it in
both this manual and the hardware schematic. All the pins which would exist
on a 24 pin EPROM are referred to by their 24 pin equivalents, regardless of
actual IC size. The four pins which do not exist on a 24 pin chip are
referred to by their real numbers, followed by an asterisk to indicate that
they are 28 pin numbers. The pin numbers for a 28 pin EPROM thus are 1%, 2%,
1, 2, 3... 22, 23, 24, 27*, 28*. Therefore, pin nine is forever the DO line,
regardless of the chip size.

EPRAM CONTROL AND DATA LOGIC

The EPRAM logic consists of a 2 MHz 6821 PIA, a pair of 74LS273 Octal D

Latches, and associated discrete hardware.

The 6821 provides the interface to the system's S30 I/O buss. Both ports of
the PIA are fully utilized, with only the interrupt inputs CAl and CA2 free.

The B port of the PIA connects directly to the EPROM socket, and is
permanently assigned to the data lines (pins 9 thru 11 and 13 thru 17). The B

port is switched between input and output modes in software.

Copyright 1982, Unique Technologies PAGE 4-1

ADVANCED INFORMATION EPRAM EPROM Programmer

The A port, on the other hand, is always configured as an output. It is
routed to the paralleled octal latches, which selectively capture data fram
the port. This method effectively doubles the number of A port lines
available.
The CA2 output of the PIA serves two functions. It is used as a clock to
latch data into the "lower" of the two latches (lines AO thru A7), and also
controls the low voltage to the EPROM socket. This line is thus labeled LVEN,
for Low Voltage ENable.

Similarly, the CB2 output controls the "upper" latch (A8 thru Al3, CS and
PGM) and the high voltage to the socket; this line is therefore called HVEN

for High Voltage ENable.

Data is read fram the EPROM simply by reading the B port. Similarly, data is
transmitted by switching the B port to output mode, then writing data to the
port.
Addresses and control signals, however, must be transmitted by a multi-step
process. First, the data for the lower latch is sent to the A port, then the
LVEN is pulsed to latch the data. Next the data for the upper latch is sent
to the A port, followed by a pulsing of the HVEN line. (The actual latching
may also be performed in reverse order; i.e., upper then lower.)

The remainder of the logic is devoted to switching the EPROM power supplies.
Referring to the schematic diagram, the LVEN line drives TR2, which in turn
controls TRl, the actual switching transistor for the 5V EPROM supply. In a
like fashion the HVEN line controls TR4, which drives TR3, the high voltage
switching transistor. HVEN also switches the 555 on and off, so that the high
voltage circuit does not run unless the supply is actually required.

EPRAM VOLTAGE SOURCES

The EPRAM board contains four regulators. These regulators, in conjunction
with the 555 and associated circuitry, provide all the necessary voltages for
the card and EPROM.

IC4, the "system" regulator, is a 7805 which provides the 5 volt supply for
the 6821 and the 7418273 latches; it is on at all times.

IC2 is the 5 volt regulator for the EPROM socket. The unregulated 8 volts
from the computer's I/O buss passes through the low voltage switching
circuitry of TR1 and TR2 and is regulated to 5 volts by IC2. Its output is
connected to the EPROM socket's pin 28%, as well as pin 13 of the personality
module socket. Power is only applied to IC2 during access to the EPROM socket
or after initial power-up or a reset.
(The alternative to using a seperate regulator for this function would be to
switch the 5V regulated voltage fram IC4. However, there is roughly a .6V
drop across TR1l, which would result in a Vcc of 4.4 volts for the EPROM. By

PAGE 4-2 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer ADVANCED INFORMATION

placing the switching network before a dedicated regulator a full 5 volt Vcc
is assured.)

IC1 supplies the Vcc for the 555 timer. The unregulated 18 volt supply fram
the system buss is clamped to approximately 12.6 volts due to the forward
voltage drop across D1 in the 7812's ground leg. (Incidentally, this diode is
a 1N4001 or better; all other diodes on the EPRAM board are 1N914s or
equivalent.)
This 12.6 volt source feeds the 555, which is configured as an astable
multivibrator producing a near-square wave at roughly 15 KHz. This square
wave has an amplitude of approximately 11 volts, due to limitations within
the chip.

This square wave is fed to a voltage tripler camprised of capacitors C9
through Cl2 and diodes D3 through D6. When the output of the 555 goes low C9
is charged to approximately 12 volts through D3. When the 555 output returns
high D3 is reverse biased, and the charge on C9 (which is now in series with
the output fram the 555) charges Cll through D4. The resulting voltage on Cll
is about 22 volts. The second half of the voltage tripler operates in a
similar fashion, but instead of charging C10 from 12.6 volts, the increased
voltage fram Cll is used. With a Vcc of 12.6 volts fram ICl the unclamped
output across Cl2 would be approximately 30 to 35 volts.
(Due to the cambination of pre-regulator ICl and the voltage tripler EPRAM
can operate with "+18" supplies ranging fram about 15 volts to well over 30
volts with no change in performance. Many programmers which use a voltage
doubler have a more restricted operating range.)
D7 is a five watt zener which clamps the voltage across Cl2 to 30 volts
maximum. This zener protects C12 and IC3 fram the excessive voltage which
could be developed if the high voltage were enabled with no EPROM in the
socket.
The output of the tripler then passes through the high voltage switch TR3 to
IC3, an IM317 variable voltage regulator. The output of this IC is either 21
or 25 volts, depending on the divider connected to the IC's reference pin.
R13 provides a 21 volt Vpp; R14 adds an additional four volts for 25 volts
total. R13 and R14 are paralleled by trim resistors TL (Trim Low) and TH
(Trim High) respectively; these resistors are factory selected for precise

Vpp values. The normal Vpp is 25 volts; bypassing R14 with a personality
module strap produces the 21 volt supply.
The low voltage supply is controlled by the LVEN line, which drives the
switch pair TR1 - TR2. Likewise, the HVEN line controls the TR3 - TR4 switch.
In addition, the HVEN line is also tied to pin 4 of the 555, which acts as an
enable line for the oscillator. Thus the voltage tripler operates only when
the high voltage is needed. Capacitors C13 and Cl4 in the high voltagecircuit and C4 in the low voltage circuit serve to hold the voltages up
briefly after the associated supplies have been turned off. This allows the
program to use the HVEN and LVEN lines to strobe data into the octal latches
without affecting the voltages supplied to the EPROM socket.

Copyright 1982, Unique Technologies PAGE 4-3

ADVANCED INFORMATION EPRAM EPROM Programmer

While the LV LED is connected directly to the five volt EPROM supply, the HV
LED is driven by the collector of the high voltage switch driver TR4; this isto avoid unnecessary loading of the voltage tripler. Diode D8 prevents the
low reverse breakdown voltage of the HV LED fram affecting the switchingcharacteristics of the TR3 - TR4 pair.
The EPRAM hardware is overdesigned to a certain extent. This is evidenced in
part by the voltage tripler where a voltage doubler probably would have been
acceptable. The use of TO-220 regulators is another example; the TO-92
versions are good to 100 mA and would have been quite satisfactory. However,
by using the heavier regulators we have eliminated all concern about duty
cycle limitations and overheating; the EPRAM system is capable of operating
continuously 24 hours a day. In fact, although the largest current demand is
about 30 mA intermittent, we found during testing that the voltage tripler is
capable of supplying better than 50 mA at 25 volts, which was more than
enough to quickly smoke the 1/2 watt resistor we were using for a load! With
a heavier resistor we were able to continue this test for more than 24 hours
with no damage to the circuitry.

ADJUSTING THE HIGH VOLTAGE

As mentioned earlier, the high voltage Vpp is preset at the factory by the
trimming resistors TL and TH. Under normal circumstances this adjustment need
not be altered, but if it becomes necessary to change any of the voltagedivider resistors (or possibly IC3) Vpp may be affected. Here, then, is the
procedure for selecting TL and TH.

TL must be adjusted first. Connect pins 1 and 16 of the personality module
socket together; this can easily be accomplished by inserting a module for an
HMOS™ EPROM (such as the 2732A) in the socket.
Run the QED program and set it for one of the 16K byte EPROMs (2528 or
27128). Select the program function and tell QED you wish to program the
entire buffer. When you hit C for continue Vpp will be turned on. If
programming is completed before you are finished, simply repeat the
procedure. DO NOT PLACE AN EPROM IN THE SOCKET!

Now measure Vpp at pin 12 of the personality module socket; it should be at
21 volts, plus or minus one half volt. If not, remove TL and begin
substituting new values. A lower value for TL reduces Vpp; a higher value
increases it. Note that Vpp will always be above 21 volts with TL out of the
circuit.
Now remove the jumper between pins 1 and 16 of the personality module socket.
Vpp should rise to 25 volts, plus or minus one volt. If not, remove TH and
begin substituting as above. Vpp will always be above 25 volts with TH out of
the circuit.

PAGE 4-4 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer ADVANCED INFORMATION

THE QED DRIVER PROGRAM

QED is the software which makes the EPRAM system "go". By placing theresponsibility for most of the timing and control functions with thesoftware, we were able to eliminate several latches and one shots from theEPRAM board, making the hardware simpler and less expensive. The price paidfor this simplification is determining the DELAY constant when initiallyassembling the software.
QED is relatively large for its function (about 6K bytes), but a significantpart of this bulk is devoted to ASCII text. If your application requires QEDto fit in a smaller area, this would be the best place to begin trimming.
In an attempt to make QED as system independent as possible, the programcontains its own terminal I/O routines. In fact, QED is so transportable thatit can be installed, without modification, on virtually any 6800 or 6809system using an ACIA based terminal and containing sufficient user memory.The standard user defined variables are the only setup required. Users ofnon-ACIA based I/O generally need only patch in a few vectors to existingroutines, although special attention must be given to controlling characterecho.

This manual will not attempt to explain every detail of the QED program(which is the function of the program's caments), but we will expand on afew items which need more detail. Between this manual and the program sourcecode you should be able to glean enough information to make any necessarychanges or modifications. (By the way, if you haven't tried to figure outwhat QED stands for yet, don't; it will only make you crazy. And don't askus. We won't tell.)

PROGRAM ORGANIZATION

In the 6800 version of QED, the first six bytes are occupied by thetraditional COLDSTART AND WARMSTART JUMP VECTORS. In the 6809 version, theseare long branches and the first eight bytes are used. Since the
_ currentversions of QED do not have a true warmstart address, both vectors point tothe top of the cammand loop, named WARMST.

Immediately after these vectors are a group of FCBs, FDBs, and EQs whichmake up the USER DEFINED VALUES. These are the constants which must be set upto adapt QED to any given system.

Following this block is a second block of SYSTEM EQUATES, followed by a blockof SYSTEM VARIABLES. Except for same tabular data in the next section thesetwo blocks contain all the equates and variables for the entire QED system.
Next is a large block of TEXT STRINGS. In addition to user messages thissection includes several menus and data tables. These special functionstrings and equates are located at the end of the text string block.
Now cames the juicy stuff! The first segment of QED program is the main

Copyright 1982, Unique Technologies PAGE 4-5

ADVANCED INFORMATION EPRAM EPROM Programmer

COMMAND LOOP, beginning with the label WARMST. The command loop has the
responsibility of vectoring control to the various subprograms in response to

menu entries.
Following the command loop are a group of what we call "SUBPROGRAMS". These
program segments are not subroutines, but are "called" to perform a specificfunction much like a subroutine. With the exception of the exit subprograms,all return control to the command loop at the WARMST point.
After the subprograms are a block of SUBROUTINES. The general program flow is
for the command loop to vector to one of the subprograms, which in turn maycall many subroutines to complete its task. Note that while subroutines call
other subroutines, a subprogram is never "called" by another subprogram
(although a few vector control, never to return).

THE OPT2 TABLE AND EPROM VARIABLE

The EPROM type to be operated on is controlled by a constant loaded into the
double byte variable named "EPROM". This variable is initially set for the
default EPROM type with an FDB during assembly, and is altered using the
SELECT EPROM TYPE command.

This double byte variable performs several functions, and is fragmented as
shown:

7 61 5 4} 3 2 1 0} }7 6 5 4 3 2! 1 0!
i READ | STANDBY | EPROM TYPE NO. | | EPROM SIZE IN K BYTES | PROGRAM |!

| PGM CS | PGM CS | Po | PGM CS |

HIGH BYTE LOW BYTE

Taking the simpler portions first, EPROM SIZE IN K BYTES is a one of six code
representing the EPROM size from 1K to 32K bytes. Thus it can be seen that,in software at least, the EPRAM system is ready for the 32K byte EPROMs
(272562???) . However, this will require a multiplexing of pin functions on the
EPRAM board, and it remains to be seen if this can be done without hardware
modification. This value is used by subroutine CBFEND to calculate the ending
location of the data buffer, given the buffer starting address and the EPROM

size.
EPROM TYPE NO. is a four bit binary number representing the type-code
assigned to the EPROM. The ASCII letter is obtained by adding $40 to the type
number; thus number 3 is $43 or EPROM type "C". EPRAM can access fifteendistinct EPROM types from its menu (although number 0 could be used it is not
implemented), and therefore has room left for several new chips. This value
is used by subroutine DISPHD to index into the ETYPE table and obtain the IC
name for the menu headers.

PAGE 4-6 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer ADVANCED INFORMATION

The READ, STANDBY and PROGRAM bit pairs represent the values of the PGM and
CS bits during the respective states. The RFAD state is the normal condition
for the EPROM. When programming is to be performed, the EPROM enters the
STANDBY state; this condition also exists between programming pulses. The
PROGRAM mode is the time during which a memory location is actually
programmed. (Note that there is no power—down or idle state implemented. This
is not needed, since the Vcc to the socket is turned off when the EPROM is
not being accessed.) These bit pairs are used by the SETCTL subroutine tobuild the READ, PGM, and STDBY masks which are merged with chip addresses
when sending information to the EPROM.

ADDING NEW EPROM TYPES

Although it is possible to add a new EPROM to the QED menu, it is not
particularly easy. This should not be a problem however, since adding a new
chip won't be required very often! Here is an outline of the procedure if itbecames necessary:

First, modify the EPROM selection menu MENU2 to include the new IC. This is a
simple matter of selecting a type—-code and adding the required ASCII text.
Second, use the manufacturer's literature to determine the EPROM size and
required bit pairs for READ, STANDBY, and PROGRAM. Build the double byte
"EPROM" constant from these numbers and the EPROM TYPE number which
corresponds to the code you have selected for the menu.

Third, add your new type-code letter and the "EPROM" constant to the OPT2
table.
Fourth, add the type—code letter and chip name to the ETYPE table in the SAME
RELATIVE POSITION as your addition to the OPT2 table.
Of course to really do this job right you would re-letter all the menu
entries so the EPROMs are still in the proper order, but this would be a
monumental task! We therefore make this suggestion: if you find a new EPROM
you can program (not another manufacturer's 2500 or 2700 series, but a trulydifferent chip), send us all the information including the EPROM constant,
and we will revise the QED program to accomodate the chip (and of course send
you a copy).

And a P.S.: Don't forget that setting QED up for a new EPROM is only half the
job. You must also create a personality module for the new chip!

Randam thought: Has it occurred to you that, with the advent of the word
processor, the true P.S. is for the most part extinct? It serves no useful
purpose, since you can easily move back into the text of a letter and insert
the renegade thought at the appropriate place. And, if you are sitting there
reading this wondering what it has to do with anything, take heart; I am
sitting here typing it and wondering exactly the same thing.

Copyright 1982, Unique Technologies PAGE 4-7

ADVANCED INFORMATION EPRAM EPROM Programmer

QED PROGRAM FUNCTIONS

In this section we will list the functions of the major QED subprograms and
subroutines. A few explainations will be included, but the source code for

QED should be consulted for detailed information.

WARMST This is the entry point for the main command loop. All subprograms
except for exit functions return here.

KONST This subprogram is called by entering a K from the main menu. KONST
fills a block of memory with a constant value.

CHANGE This subprogram is called by entering a C from the main menu. CHANGE
allows you to examine and change the data in individual memorylocations.

LDMEM This subprogram is called by entering an M fram the main menu. LDMEM
moves a block of data from one area of memory to another. This routine
automatically determines whether the destination block is higher orlower than the source block, and copies data in the appropriate
manner so that no information is lost in case of overlap.

LDPROM This subprogram is called by entering an L fram the main menu. LDPROM
copies part or all of the data in the EPROM to the buffer area.

REIOC This subprogram is called by entering an R from the main menu. RELOC
moves the QED program to another location in user memory. The buffer
area is not disturbed or moved. To perform this task the routine sets
up the necessary pointers and limits, then copies the core of the
LDMEM subprogram (SOMOVE through EOMOVE inclusive) to the TCA where itcannot be overlaid. RELOC then determines where it must vector after
QED is relocated, and pushes this address onto the system stack as a
pseudo return address before executing the move.

XEQCMD This subprogram is called by entering a D from the main menu. XEQCMD
allows you to execute any of your OS cammands which do not load into
or use the area of memory in which QED resides. XEQCMD obtains the OS
warmstart vector and replaces it with a pointer to itself before
calling the OS. When the routine being used attempts to warmstart the
OS, control is instead returned to QED, which replaces the original OS
vector and executes a cleanup call.

ALTER This subprogram is called by entering an A fram the main menu. ALTER
is used to move the buffer to a new area of memory.

HDUMP This subprogram is called by entering an H fram the main menu. HDUMP
is used to generate a standard paged HEX/ASCII dump of any section of
memory.

PAGE 4-8 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer ADVANCED INFORMATION

VERIFY

ERASED

PROGRM

EXMON

MIDDLE

DISPHD

DADDR

SETCTL

OUT4HN

GETLIM

This subprogram is called by entering a V from the main menu. VERIFY
compares the contents of the EPROM, or a portion thereof, with the
contents of a corresponding section of the buffer. Any mismatches are
reported.

This subprogram is called by entering an E fram the main menu. ERASED
is used to verify that any portion of an EPROM contains only SFFs,
which is the erased state of an EPROM. This routine merely sets a flag
before vectoring to VERIFY.

This subprogram is called by entering an S fram the main menu. SELECT
is usedto alter the value in the "EPROM" variable, thus setting QED
for a new EPROM type.
This subprogram is called by entering a P from the main menu. PROGRM

is called to actually program an EPROM, or a portion of one, with the
contents of the buffer.
This subprogram is called by entering an X fram the main menu. EXMON

clears the screen and exits to the system monitor.

This subprogram is called by entering a Q from the main menu. EXDOS
clears the screen and exits to the resident OS.

This subroutine homes the cursor and clears the screen.
This subroutine clears the screen and moves the cursor to the middle
of the screen vertically.
This subroutine displays the text pointed to by X, followed by the
remainder of the menu header text. The "EPROM" variable is used to
obtain the EPROM type—code and name for display, and subroutine DADDR

is used to display the buffer limits. CLRSCN must be called before
this routine.
This subroutine adds the size of the EPROM given by "EPROM" to the
start of the buffer given in BUFST and places the results in BUFEND.
The buffer limits are then displayed on the terminal.

This subroutine builds the READ, STDBY, and PGM byte masks from the
bit pairs given in the "EPROM" variable.
This subroutine signals a keystroke error by backspacing the cursor
over the error and ringing the terminal bell.
This subroutine displays the hex address pointed to by X on the
terminal.

This subroutine displays the hex value in A on the terminal.

This subroutine displays the text string pointed to by X, shows the
current buffer limits, then obtains the starting and ending limits for

Copyright 1982, Unique Technologies PAGE 4-9

ADVANCED INFORMATION EPRAM EPROM Programmer

GETBEG

LIMCHK

CORABO

BADDR

INITAD

DATIN
DATOUT

LVON
LVOFF
HVON
HVOFF

LOADHT
LOADLO

WAITS0
WAIT2X

an operation. These limits are placed in BEGIN and LIMIT. If a "W" is
entered for the beginning limit the buffer values are autamatically
inserted.
This is the first half of the GELIM subroutine; it does everything
except ask for an ending value.

This subroutine looks for an overlap of the operation limits and QED

program. If one is found a warning message is displayed. LIMCHK is
called only by mass change operations.
This subroutine displays the "C)ontinue or A)bort?" prompt, then
obtains a response from the terminal. If an A is entered, the carry
bit is set to show an abort was requested; the carry is cleared for a
C. Any other character is rejected.
This subroutine inputs four valid hexadecimal ASCII characters fram
the terminal and builds a hex address fram them in X. Non-hex
characters are rejected, and the routine will not return control until
four characters are entered.

This subroutine determines if the character in A is a valid hex digit,
and converts it to its binary equivalent if so. The carry is cleared
if the digit was valid and set if not.

This subroutine adds the EPROM size indicated by the "EPROM" variable
to the start of the buffer in BUFST and places the resulting end of
buffer in BUFEND.

This subroutine turns the low and high voltages to the EPROM socket
off.
This subroutine initializes the address side of the PIA. It exits
through LVOFF.

These subroutines control the direction of the data side of the PIA.
DATIN sets the PIA for input, while DATOUT sets it for output. Both
exit through HVOFF.

These subroutines control the voltages to the EPROM socket. LVON

enables the Vcc to the socket, while LVOFF disables it. In the same
manner HVON enables the Vpp to the socket, and HVOFF turns it off.
Several other subroutines exit through these functions.

These subroutines are used to load data into the "upper" and "lower"
data latches without disturbing the EPROM voltage lines. LOADHI

momentarily pulses the CB2 line in the opposite direction of it's
existing state; LOADLO serves the same functionwith the CA2 line.

These subroutines generate the required time delays for programming an
EPROM. WAITS0 returns after 50 milliseconds; WAIT2X calls WAITS50 twice
for a one tenth second delay.

PAGE 4-10 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer ADVANCED INFORMATION

VGETCH

ACTATN

OUTST

This subroutine obtains a single character from the terminal. Only
displayable characters are accepted, and lower case characters are
converted to upper case autamatically. The character is echoed back to
the terminal.

This subroutine obtains a single raw character from the terminal. No
echo is provided. This subroutine must be modified for non-ACIA based
systems.

This subroutine sends the ASCII string starting at X to the terminal.
A null indicates end of string.
This subroutine transmits the character in A to the terminal. This
subroutine must be modified for non~ACIA based systems.

This subroutine locks up an entry in a table. On entry, the code to
match is in A with X pointing at the table. LOOKUP returns with the
two bytes following the table code in the X register. If the code is
not found the carry bit is set. A null indicates end of table.

Copyright 1982, Unique Technologies PAGE 4-11

EPRAM EPROM Programmer : TROUBLESHOOTING HINTS

OH, NO!

Let's hope you are reading this out of curiosity, and not because you need
help. This section will run down same common problems and their most likely
causes. We will not attempt to repair defective hardware or software bugs,but rather present possible installation or configuration errors and theirsolutions.

SYMPTOM: LV LED DOES NOT ILLUMINATE ON SYSTEM POWER-UP OR RESET

HARDWARE: The LV LED lights because the associated PIA control line becomes
an input whenever the PIA is reset. The line floats high, turningthe LV LED (and the socket low voltage) on. If this LED does not
illuminate, make sure the EPRAM card is getting its unregulated 5V
source (usually around +8 to +12 volts).
If this LED lights during normal operation and the programmer
operates properly in all other respects, it may be that the
floating line simply does not turn the LV switching circuit on.
This is a question of component tolerance and, although unlikely,is certainly possible. If this is indeed the case it is nothing to
be concerned about.

SYMPTOM: LV LED DOES NOT EXTINGUISH WHEN QED IS RUN

SOFTWARE: The most likely cause of this defect is that the incorrect address
was supplied for the constant "EPRAM" when the program was
assembled. Check this equate and correct it if necessary.

SYMPTOM: LV LED EXTINGUISHES WHEN QED IS RUN BUT SCREEN REMAINS BLANK

SOFTWARE: Most probably an incorrect address was supplied for the constant
"ACIA" when the program was assembled. If your system uses a PIA
for I/O or you have a video board, check your interface software
for problems. Remember, QED wants to talk DIRECTLY to a standard
ACIA. It does NOT use any of your OS or monitor I/O routines.

SYMPTOM: SCREEN DATA SCROLLS, GARBLED DISPLAYS, OR A TACKY SCREEN FORMAT

SOFTWARE: Check the values you supplied for the HOME CURSOR / CLEAR SCREEN
sequence, as well as the backspace function. All of QED's displays
were well thought out (at least WE like to think so!) and should be
neatly centered and legible. The only displays which should scroll
data off of the screen are the C command and whatever OS functions
you you might call using the D cammand. All other displays should
be presented in a paged format.

Copyright 1982, Unique Technologies PAGE 5-1

TROUBLESHOOTING HINTS EPRAM EPROM Programmer

SOFTWARE :

SOFTWARE:

SOFTWARE:

PAGE 5-2

Remember that QED was written for a standard 80 x 24 terminal
format. If your screen format is significantly different you will
have to restructure the QED text to prevent wraparound or
miscentered screens.

SCREEN DATA LOOKS OK BUT (SOME) INPUT NOT ACCEPTED

This is almost impossible unless you are running a non-ACIA based
system and supplied your own routines. With an ACIA, if you got the
base address correct and are getting output then the input will
automatically be OK. With non-ACIA systems, be sure of your I/O
routines and vector addresses. If QED reacts to all inputs but some
are rejected when they should be accepted, make sure you are
stripping any parity bits fram your input device.

INPUT CHARACTERS ARE DOUBLE ECHOED

This is another problem usually caused by a non-standard QED

adaptation. Make sure the input routine you substituted for INEEE
does not echo characters at any time. QED handles its own echo
autamatically. This bug is also evidenced by rejected characters
making the cursor walk across the screen.

If you are using a standard ACIA-based system, check to make sure
your terminal is not echoing its own characters. Same terminal
manufacturers call this a HALF-DUPLEX mode; it is not often used.

EVERYTHING LOOKS OK BUT EPROMS FAIL TO PROGRAM

If this is your first attempt at programming since installing QED,
make sure you specified the correct "DELAY" constant. If this value
is too small the EPROM will not be programmed; too large a value
can damage the chip. Also be sure you have selected the proper
EPROM type for the chip you are attempting to program. Is the chip
erased? Remember, programming an EPROM means turning ones into
zeroes; you can't go the other way!

Make sure the correct personality module is installed for the chip
you are programming. Also be sure the EPROM is inserted in the
socket properly; with 24 pin chips there are five ways to do it
wrong and only one way to do it right. This also applies to the
personality module (but there is only one way to get it wrong!)
Check the programming voltage, Vpp, to be sure it is at either 21
or 25 volts. A lack of high voltage could be caused by an
excessively low unregulated 15 volt line (usually will run fram
better than 15 volts to 30 volts). Remember, The HV LED will
illuminate during a programming attempt EVEN IF NO HV IS PRESENT.
Also suspect a bad EPROM.

Copyright 1982, Unique Technologies

EPRAM EPROM Programmer TROUBLESHOOTING HINTS

SYMPTOM: DATA READ FROM OR PROGRAMMED INTO EPROM IS REPEATED

HARDWARE: This symptom can be seen in several ways, such as each byte being
repeated twice, or data repeating in blocks of eight bytes. It will
evidence itself either when data is read from an EPROM into the
buffer, or when an EPROM is programmed. It is usually caused by oneof the EPROM's address pins not making contact with the socket.
Keep dust and dirt out of the ZIF socket to help prevent this. This
symptan can also be caused by a bad connection in the personality
module socket, but in this case will only be seen as very large
repeating blocks. Also suspect the EPROM.

SYMPTOM: ONE BIT IN EACH BYTE STUCK DURING READ OR PROGRAM

HARDWARE: This symptom is caused by an open pin connection, much like the
above problem. An open data line will cause that line to float
high, resulting in a stuck "1" during either a read or program
operation. A stuck "0" is much less cammon. As above, keep the ZIF
socket free of dirt and dust if this problem occurs. Remember thatthis symptam can also be caused by a bad EPROM.

ABOUT SURPLUS EPROMS...

Several of the problems above mention the possibility of a bad EPROM. OF ALL
THE EPROMS WE HAVE EVER PROGRAMMED, WE HAVE NEVER FOUND A BAD IC. The
majority of manufacturers have excellent quality control and catch most
problems before an IC leaves the factory.
Surplus chips are another matter. Many campanies buy up "culls" fram the
manufacturers; these are chips which FAILED the QC tests. Most dealers arenot unscrupulous enough to sell out-and-out bad parts (although same don'tbother to test), but many will be out of spec. We know of one customer who
has a bunch of EPROMs which blow up if programmed with a 50 Msec pulse; he
has to use a 30 Msec pulse on these. We have used chips from the same
manufacturer before and have had no problems; the specs clearly state a 50
Msec pulse is required to program them. This person goes to hamfests often,
and we believe he bought a bunch of culls, although he blames his problems onthe manufacturer.

This is not intended to frighten you away fram hamfests and surplus dealers;
same excellent buys can be obtained this way. We simply want to put ourremarks about suspecting bad EPROMs in the correct light: if you buy onlyfrom semiconductor houses and first—quality distributors, be less concerned
about the chip being bad when locking for problems.

Copyright 1982, Unique Technologies PAGE 5-3

EPRAM EPROM Programmer PERSONALITY MODULES

ALI. EPROMS ARE NOT CREATED EQUAL

EPROMs range in size fram the 1K 2508 and 2758 up to the mammoth 16K 2528 and
27128. (Can there be any doubt that a 32K byte "2556" or "27256" is on the
way?) Every time the amount of memory in an EPROM is doubled, one more
address line is required to access the added memory.

When the lowly 2708 was designed, no one could think about the higher density
chips, so increasing memory meant moving pin functions around to make room
for the new address lines. This got totally out of hand once the density hit
8K bytes, and manufacturers had to add four new pins. This is one of the
contributors to the pinout melee in the EPROM industry. Another factor is
secrecy, lack of cammmnication, and just plain bull-headedness. ("Sure, we
know THEY are working on a 4K byte EPROM too, but we're not about to conform
to THEIR pinout; let THEM conform to OURS!")

Fortunately, the situation is not as bad as it could be. Thanks in a large
part to the work of JEDEC (the Joint Electron Device Engineering Council), we
have an industry standard EPROM pinout which fixes the position of most of
the pins.

WHAT DOES THE PERSONALITY MODULE DO?

EPRAM's personality module is basically a jumper assembly designed to route
the address and chip control signals to the remaining "funky" pins. In
addition, the module sets the programming voltage and provides transient
suppression where needed.

If you will examine the EPROM pinout chart in the appendix, you will see that
only pins 18 through 21 change function on a 24 pin EPROM, and that pins 2%,
24, and 27* vary on 28 pin chips. (See the paragraphs on hardware in the
ADVANCED INFORMATION section for data on our EPROM numbering system.)
What we have done is brought same of these socket pins out to the personality
module socket, along with the associated address and control lines, so they
may be jumpered together as required.
Now look at the pinout of the personality module socket, also in the
appendix. You will notice that EPROM pin 19 is not brought to the socket.
This is because pin 19 is address line AlO in all chips except for the 1K
byte versions, where this line is called "Array Select" or samething
equivalent. Since this pin always performs the same function in the chips
EPRAM handles, it is not brought to the module socket. (See the section ALL
ABOUT EPROMS for more information on line Al0.) What ARE brought to the
socket are the address lines All through Al3, the two control lines called CS
and PGM, 5 volts (Vcc), 21/25 volts (Vpp), ground, the Vpp select line, and
EPROM socket pins 2*, 18, 20, 21 ,24, and 27*.

Building a personality module is a simple matter of connecting the right
signals to the right EPROM pins. The appendix contains diagrams of the
internal connections for all the modules needed by EPRAM; you have simply to
look up the required EPROM and wire a DIP header accordingly.

Copyright 1982, Unique Technologies PAGE 6-1

PERSONALITY MODULES EPRAM EPROM Programmer

DESIGNING NEW PERSONALITY MODULES

We will now examine the creation of a personality module, in case you must
build a module which is not listed here, or are just plain interested. We
will illustrate our discussion with the design of a module for the 2532. All
pin connections which are not given in parentheses are for the personality
module.

For most EPROMs designing a module is a relatively simple process. First,
connect the required address lines to their appropriate pins. For a 2532 we
need twelve address lines. AO through AlO0 are already connected to the
socket, so we need only jumper pin 14 (All) to pin 7 (EPROM pin 18).

Next you must consider Vcc. All 24 pin EPROMs have their Vcc applied to pin
24, so you should jumper module pin 13 (switched 5 volts) to pin 4 (EPROM pin
24). Note that 28 pin chips receive their power through pin 28%, which is
permanently connected to Vcc.

Now comes Vpp. You must jumper EPRAM's HV source to the appropriate pin on
the EPROM; it is usually labeled Vpp, or Vpp/samething. In this case we would
connect module pin 12 (switched Vpp) to pin 5 (EPROM pin 21).

The next consideration is whether the Vpp pin should be held to 5 volts or
ground when reading fram the EPROM. Most chips require it to be held to Vcc;
if this is the case you should connect a small diode (a 1N914 or 1N4148 is
acceptable) between the module's Vcc pin 13 and Vpp pin 12, with the cathode
to pin 12. This will hold the EPROM's Vpp pin to 4.4 volts during read (a
very legitimate logic one), while preventing the high voltage fram feeding
back into the Vcc line. A very few EPROMs require Vpp to go to ground to read
data; for these simply leave the diode out.
Now connect the PGM line. This is the line which pulses for 50 milliseconds
to actually program a memory location. It is to be connected to the EPROM's
PGM pin, which can also be called PGM/samething or just something. If it's
not listed on the pinout diagram, lock elsewhere in the manufacturer's
data. In our case we connect module pin 10 (PGM) to pin 6 (PD/PGM).

Next you must consider the CS line. This pin is connected to the second chip
control line, which may be called Output Enable or Chip Select. This is the
enable or select line which does NOT share the program function. For a 2532
module pin 11 is ignored. In the case of multiple control pins, they can all
be tied together (assuming the polarities are identical) or the extra pins
can be connected to pin 13 (Vcc) or pin 16 (ground) as required to enable
them.

Most EPROMs require a 25 volt Vpp, which is normally supplied by EPRAM.
EPROMs which are built using HMOS™, however, would be permanently damaged by
a 25 volt Vpp; they require 21 volts instead. This lower voltage is obtained
by strapping module pin 1 (21VSEL) to pin 16 (ground). Since the 2532 uses a
25 volt Vpp this strap is also ignored.

PAGE 6-2 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer PERSONALITY MODULES

Finally, you must consider any requirements particular to the specific EPROM
which have yet to be covered. For example, chips using INTEL's HMOS™ process
or equivalent usually require a .l1 microfarad capacitor between pin 12 (Vpp)
and pin 16 (ground) to prevent transients fram damaging the EPROM. The 2532
has no such requirements.
WARNING: Same manufacturers like to bury this information. For example, INTEL
clearly states in bold type that when applying Vpp EXCEEDING 22V WILL. DAMAGE
THE 2732A. It's hard to miss. However, the warning about transients is buried
in the third paragraph under PROGRAMMING and is stated rather casually. Be
sure to read all the fine print, and double check your wiring before trying
out a new module.

Copyright 1982, Unique Technologies PAGE 6-3

EPRAM EPROM Programmer ALL, ABOUT EPROMS

ALL. ABOUT EPROMS?

Well, only in the sense that this section is all about EPROMs; we certainly
couldn't tell you everything there is to know! This portion of the manual
runs down same basic information that we felt might be of use to you.

STATIC ELECTRICITY DAMAGE

Yes, yes, you've heard this before. Over and over. But it doesn't hurt to
mention it again. MOS BASED ICS ARE SUSCEPTIBLE TO DAMAGE FROM STATIC
ELECTRICITY! USE EXTREME CARE WHEN HANDLING THEM!

Don't fondle your EPROMs. Leave themin their anti-static carriers until you
are ready to program or use them, then move them immediately to their
sockets.

Be especially careful during the winter. Static conditions are at their peak
during cold (and dry) weather. Remember all those times you were bitten
sliding out of the car last winter? Think what that would do to an EPROM.
(And you guys in Florida take pity on the rest of us.)
Here's a new one you may hot have heard: HITACHI (a well-respected
manufacturer of EPROMs) says. that a static charge can be induced in the
surface of an EPROM's window, which can damage the chip. This means that you
can destroy an EPROM even though it may still be in its carrier. Be careful.
Avoid rubbing the windowwith nylon fabric, plastic film, etc.

Support the back of the EPRAM PC board with your fingertips while inserting
or removing an EPROM; let your fingers touch the PC traces. This not only
prevents the board from flexing on the buss connectors, it allows any static
potential in your body to drain away before inserting the EPROM in the
socket.

ERASING EPROMS

An EPROM is erased by exposing it to "ultraviolet light". Ultraviolet is a
term for those frequencies of electromagnetic radiation Just above the
visible range. Like visible light, ultraviolet spans a range of wavelengths.
This range has been broken down into two categories, termed "shortwave
ultraviolet" and "longwave ultraviolet".
Longwave ultraviolet is energy near a wavelength of 3660 Angstroms, and is
the type of light normally used to excite "fluorescent" posters and glow-in-
the—-dark items. They can be found in tourist caves (to make the natural rock
formations fluoresce), discos, and teenager's rooms. Longwave ultraviolet
radiation is mostly harmless to the eyes.
Shortwave ultraviolet is that band of energy near 2537 Angstroms, and is used
for many technical applications, such as sterilization and erasing of EPROMs.
(EPROMS are sensitive to any radiation with a wavelength shorter than about

Copyright 1982, Unique Technologies PAGE 7-1

ALI, ABOUT EPROMS EPRAM EPROM Programmer

4000 Angstroms.) SHORTWAVE ULTRAVIOLET RADIATION IS HAZARDOUS TO YOUR EYES,
AND CAN CAUSE PERMANENT DAMAGE! Never look at an EPROM eraser's lamp when itis on. Most erasers have sealed or filtered enclosures to prevent the escape
of ultraviolet, and have interlocks to extinguish the lamp if the cover is
removed. If you will be using a homebrew eraser you should use extra caution,
as these safety features are usually ignored. Be especially careful of others
who may be ignorant of the dangers, such as young children. WE DO NOT
RECOMMEND HOMEBREW EPROM ERASERS UNLESS FULL SAFETY PRECAUTIONS ARE TAKEN.

The amount of time required to erase an EPROM depends on the amount of
ultraviolet energy impinging on the surface of the silicon chip. This is
determined by both the intensity of the source, and its distance from the IC.
For example, a 12 miW/cm”2 source will erase an EPROM in about 20 minutes at a
distance of about one inch from the EPROM window.

Commercial EPROM erasers are rated for normal erase time; you should not
attempt to shortcut this exposure. An under-exposed EPROM may read as
erased, but many of its cells may be in a borderline or unstable condition;
a memory bit which is a one may not remain a one. It is usually not worth
the potential hassle for the few minutes saved.

There is a certain amount of controversy regarding the use of EPROMs without
a protective label once they are programmed. Although it is good practice to
cover the quartz window once an EPROM is programmed, you should know the
facts. Natural daylight contains a percentage of ultraviolet light. If left
in direct sunlight during normal "earthly" conditions, an EPROM will be
erased in approximately one week, although some bits will become "soft" in a
shorter time. Normal fluorescent tubes also emit a certain amount of
ultraviolet radiation; an uncovered EPROM would be erased after about three
years. It can therefore be seen that, although the label should always be
used for safety's sake, short exposures to normal lighting conditions will
have little effect.

THE 2758 EPROM — NOBODY'S PERFECT

Regardless of the amount of control exercised during IC manufacturing there
are bound to be a few bad chips. Some will be totally non-functional, a few
wildly out of spec, maybe some that are "almost" perfect. This happens with
all chips, and EPROMs are no exception.

Fortunately for memory manufacturers, a large percentage of the failures are
one or two bits bad in the whole chip. (With 16,000 locations or so on a
chip, the odds of one being bad are mighty high!) We said fortunately because
if one bit is bad then the rest may be good. There is no law which says the
IC cannot be sold as "half good", and this is exactly what is done in some
cases; specifically, the 2758.

These chips are "half good" 2516 or 2716 EPROMs; you can prove it to yourself
by looking at the pinout. Pin 19 is labeled AR, which stands for "array
select" or "select reference", depending on which manufacturer's terms you
prefer. If you purchase a straight 2758 from INTEL or a 2758-JL0 from TI this

PAGE 7-2 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer ALL ABOUT EPROMS

pin must be grounded; you can also special order a 2758-S1865 (fram INTEL) or
a 2758-JL1 (TI) where AR must be tied high. Consider that this pin just
happens to be the AlO pin on 2516 and 2716 chips, and that the AlO0 line
selects which half of the EPROM you are accessing in a 2K chip, and it all
becames rather obvious.

(This is, by the way, nothing to be upset about. Many manufacturers use this
technique; in fact, the 32K RAM chips used by Radio Shack in their Color
Camputer™ are failed 64K chips of which they use one half. If this sort offailure were simply discarded the result would be higher prices for everyone,
and possibly the non-existence of same ICs, like single voltage 1K EPROMs.)

PROGRAMMING THE 2758

Now this situation brings up a minor problem; instead of having a simple
2758, we have two of them to consider: a "lower half" 2758 where pin 19 must
be grounded, and an "upper half" 2758 for which pin 19 must be tied high. How
do we program this (these) chips?
Remember that most 2758s you will encounter will probably be "lower half"
versions, with AR held low. Recall also that, except for AR being Al0 on 2K
EPROMs, these chips are identical. We can therefore program a 2758 exactly asif it were a 2516 or a 2716, as long as we only program 1K of data; this is
exactly what QED does when the 2758 is selected. This is, by the way, how
EPRAM can use the same personality module for the 2508, 2758, 2516, and 2716.
This then eliminates the "lower half" 2758s, leaving us with only the less
cammon "upper half" versions to worry about.
Since the 1K and 2K chips are identical except for memory size (for our
purposes), the easiest way to handle the "upper half" 2758 is to tell QED you
are programming a 2516 or 2716 (it doesn't matter which), then use only the
SECOND HALF of the buffer for programming. For example, if the buffer were
situated fram $8000 to $87FF, you would load your program into it fram $8400
to $87FF (the "upper half"!) and program only this portion into the EPROM.
Since QED will think it is programming a 2K EPROM, it will activate Al0;
because you are in the upper 1K this line will stay high and, mystically,
magically, your renegade 2758 will be programmed!

(An alternative for an "upper half" 2758 would be to create a special
personality module. in which the AR pin is tied to Vcc. This approach would
allow you to use QED's 2758 option without fuss, but would require swapping
modules more often.)

Copyright 1982, Unique Technologies
|

PAGE 7-3

ALL ABOUT EPROMS EPRAM EPROM Programmer

CONVERTING TRIPLE VOLTAGE SOCKETS FOR SINGLE VOLTAGE EPROMS

There are bound to be a few EPRAM purchasers who have an old 2708 or two in
their systems. These paragraphs outline a method for replacing triple voltage
EPROMs with their single voltage equivalents. This will make the system
totally campatible with the new chips, with the bonus of lower power
requirements and less heat generation.
(As of this writing, triple voltage 2708s are rising slightly in price while
single voltage chips continue to fall. You can now (November, 1982) purchase
a single voltage 2716 for the same price as a 2708! It is our belief that as
more and more systems move to single voltage chips and the older equipment is
phased out, the price of triple voltage chips will rise to exorbitant levels.
This sort of thing has happened before... have you tried to buy a vacuum tube
lately?)
There are only three triple voltage EPROMs in the 2500/2700 series. The 2708
1K byte chip is by far the most popular. The 2704 is a 1/2 K byte chip which
was never widely used. The triple voltage TI 2716 can be found in a few
dedicated applications like terminals and printers, but not much elsewhere.
We are therefore going to detail the replacement of a triple voltage 2708
with a single voltage 2508, 2758, 2516, or 2716. If necessary you can extend
the method to the other triple voltage chips as required.
WARNING: This data is provided for your information only. We take no
responsibility for any changes you make to your system, or any damages you
may incur, because of this discussion. You should determine for yourself the
feasibility of these changes relative to your application.
The first step in any conversion would be to program a new single voltage
EPROM with the contents of the triple voltage version you are replacing.
Since we are assuming that this chip is actually IN your system, this is a
simple matter of placing the buffer over the existing EPROM and performing a
program sequence. (If the IC is not in your system, and you have no
capabilities for reading a triple voltage EPROM, the problem is of course
very different.) If you are using a 2K EPROM to replace a 2708 because of
cost considerations (they are for the most part cheaper than single voltage
1K chips), simply program the first half of the IC, leaving the second half
untouched.

Once you have created a replacement EPROM, you can power down the system and
remove the board for the required changes. If you will compare the pinouts of
a 2708 and any of the single voltage 1K or 2K chips you will see they are
very similar. In fact, only two to three cuts and jumpers are required for
the conversion.

Begin by cutting the +12 volt source away fram pin 19 of the existing socket.
On the new chip this is AR or AlO, and should be connected instead to ground
(unless you are using an "upper half" IC, see above).

PAGE 7-4 Copyright 1982, Unique Technologies

EPRAM EPROM Programmer ALLL ABOUT EPROMS

Next cut away the -5 volt bias source fram pin 21 on the socket. On the new
chip, this is the Vpp pin, and should be connected to Vcc (+5 volts or pin
24) for normal read operation.

This leaves pin 18, which was the PGM pin of the 2708, and is the CE-inverted
of the new chip. On the original socket this pin was probably grounded, so
you have a choice. If you leave it alone, the chip will remain enabled at all
times, and its output buffers will be controlled by the old chip select line.
This mode draws a considerable amount of Vcc current at all times; 57 to 100
milliamps as opposed to 6 to 10 milliamps on the old 2708. (Remember however
that the 2708 required two other supplies and all together required fram 85
to 120 milliamps, so the TOTAL current drain will still be less.) The other
alternative is to cut pin 18 loose from ground and tie it instead to pin 20,
which is now OE-inverted; in this mode both the output buffers and the chip
select line are controlled. The current drain is still 57 to 100 milliamps
DURING ACCESS, but only 10 to 25 milliamps in standby, which is far less than
the 2708. Still, in dedicated applications with many EPROMs or a marginal
five volt supply the current requirements must be carefully considered.

Of course the possible changes don't stop here. You can usually replace two
2708s with one 2516 simply by altering the board's select logic and
connecting AlQ0. The new higher density EPROMs open a world of possibilities.

Copyright 1982, Unique Technologies PAGE 7-5

EPRAM EPROM Programmer

Vpp 1-H 89 28- Vcc
A 2- 127 F

A7 1 124 E
A6 2 123 A8
A5 3 122 A9
A4 4 321 D
A3 5 J20 C
A2 6 119 A10
Al 7 7118 B
AO 8 117 D7
DO 9 116 D6
D1 10C 015 D5
D2 11C 114 D4

Vss 120 113 D3

APPENDIX

This is an illustration of our EPROM pin
nurbering system. 24 pin EPROMs (represented
by the unshaded portion) are numbered
normally. 28 pin ICs are represented by
adding four pins to the top of the package.
These new pins are numbered as they would be
on a 28 pin chip, but the pins held over fram
the 24 pin package retain their original
numbers. To convert our numbers to standard
28 pin numbers, add two to pins 1 through 24.

The pins marked A through F indicate those
pins whose functions vary fram one EPROM type
to another. These are also the pins which are
brought out to the personality module. The
chart below shows the functions of these pins
on all 2500 and 2700 series EPROMs, as well
as same related ICs.

EPRAM Compatible EPROMS Other ICs of note

2508 | 2758 | 2516 | 2716 | 2532 | 2732 | 2732A| 2564 | 2764 | 2528 | 27128 2708 | 2716 | 2816 | 6116 | 68764

VPP

A11

VPP [VPP |VPP |VPP

VCC VCC VCC VCC

NOTES:

Al
VCC

A11

VCC

A12 A12

A11

A12 [A11

VCC [NC

On triple voltage EPROMs pin 19 is Vdd. On 1K EPROMs pin 19 is AR or NC.
OE (Output Enable) is a control line for the output tristates.
CE (Chip Enable) is a cambination device select and OE.

Same manufacturers number data pins fram 1 to 8 rather than O to 7.
TI's PD (Power Down) is equivalent to INTEL's NOT CE (Chip Enable).
TI'S NOT CS (Chip Select) is equivalent to INTEL's NOT OE (Output Enable).

Copyright 1982, Unique Technologies PAGE 8-1

A11

A10

CE/VPP

A12

APPENDIX EPRAM EPROM Programmer

24 PIN PROM 28 PN EPROM

21VSEL Q ® QD

N.C. @ @® 213

. PIN 27* @ @® all
PIN 24 @ @® Vcc

°
PIN 21 @ ® Vpp] |

PIN 20 @ @® Cs

PIN 18 @ @® PcM1] PIN 2* @ @ Al2

I =
Personality Module Pin Functions

IC ORIENTATION

® ® @ @

® ® ® ®

® ® ®

® ®¥ 1 «O——merceeell) ® ® ®> TT ® °
® ®[J ® ¢ ®

2508 2532 2564 25282758
2516
2716

® ® Or = = = wp =~, Oo—ererreelpmmmy ® ®

® ® ® ® ® ® ® ®

° ° ° =. - 1 ® ®

® ® 1 ® ® ®. a i .® ® ® ® ®

® ® Ort ® ®

® ® ® ® > ® ®

2732 2764 27128
(Add dotted
for 2732A)

PAGE 8-2 Copyright 1982, Unique Technologies

MSAS

‘poriesay

siybiy

Iv

‘Z86L

WbBuAdoy|zaLT/e

-

3iva

0|
o2z'80z8-0sWvHa3

:a1

Oma]

1
:133Hs

(OHLA)

 OSWvHdI

_,.|—2%

—

WHI

“yspeise

Aq

pejou

se

jdooxe

(gg

2Z

‘z
‘1

suid

BuiiouBy)

SAOOTONHIIL

JNOINN

any

Bupequinu

uid

pz

0)

13481

S1IAQWINU

134208

WOH

IIVe

Nma

"pajou

se

1dadx3

pLENI

SapoIp

HV

‘UMOYS

JOU

suolldauuod

Ajddns

Hj

pue

sded

ssedig

dl

uo1120uu0d

ssng

Wass

=
CO

OLNd/NOd

od

jeubis

10

uo1}23uU0dIBY

=

O

NGS)
SLNd/ELY

6Wd/ZIV

PLND/L

IY

£22S1PL891

8d

ow

INd9Nd

1

SWd

'

PNd

1

tnd

:

13534

SZ/L'Y

sTILY

1

M7Y13sov

|

ov

ov

cLzSWL

[gr

tv

13%90S

201

woud3

20

La1|

sz/L'y

sy

‘

20

19

bot4

|oa

+

c18L

Ll

ners

t
1

Lo!

ol

db

oy£10

N3AH

A9'ZL

ddA

MSAS

 9LWd/anND

O-

4

Hi

3
$
it

1

>

>

“

ivy

viy

6a

-

"

YO6ENZ

€Y

INd/13SMEO

YO6ENZ

oly

10

100°

Zyl

QO

NIA

uw

$
gNeE

vyl

v—"

82

LD

sSZIL'Y

SY

yy

ie1d

2

?
eid

wo

 Mssoe

|

c

530)

AH

14

+!

vo

zy

ozZ

»

8y

sz/01

:

.

say

Qsaf

od

v

ge

z

03

JH

|b

ol

Nev

Al

9y

»”

I

14

ne

66S

—

=
5082

=

CIAB+

 ZLNA/ddA

OO

+
3

fe

Le

44

+L

fe|
te]

sO

|Z

oze

zo!

TOVYNZ

SE/01L

£0!

906€ENT

0S/EE

 OE/SS

va

[cz

ty

HL

vd

£Hl

210

1a

NY

caXk60

su

cid

Obey”Coe;

“6

a
Tr

ced

J

ov

Ad

~

coe

79

[

Fou

yg

oe

why

=

2
Chey

Fe

—

od

MSL

ING

tty

<5]

(20

—

es

st

eT

pT

tgp

ct

Coo]

GH”

CTT

1
~ocola

=:

oc?

F
oeol

GsTNR De ea2 SARgg

A—a a

