i

CSG IMS

SUPPLEMENTARY DOCUMENTATION

Release A -
for Version 1.3

059/6809

CSG IMS
SUPPLEMENTARY DOCUMENTATION

Release A -
for Version 1.3

059/6809

CLEARBROOK SOFTWARE GROUP

INFORMATION MANAGEMENT SYSTEM

IMS Supplementary Documentation

RELEASE A

Copyright 1986 Clearbrook Software Group

This documentation is copyrighted by Clearbrook Software
Group. Yo part of it may be reproduced by any means except
by written consent from Clearbrook Software Group.

The information within this documentation is believed to be
accurate. Clearbrook Software Group will not be liable for
any damages, including but not limited to indirect or
consequential damages, which may result from reliance upon
the information herein.

IMS Supplementary Documentation
Table of Contents

TABLE OF CONTENTS

Foreword .

Changes to the CSG IMS language
Changes to the Text Editor .
Revision History

Errata .

Using the Unlversal Termlnal Drlver

21
23
25
27

IMS Supplementary Documentation
Foreworad

This document contains information about the latest version
cf£ CSG IMS which is not covered in the reference manual. If
you received this IMS Supplementary Documentation with a

software update, take note of any revisions, corrections or
changes and mark them in your Reference Manual if you wish.

Version 1.3 is the latest revision of the CSG IMS package.
Since our policy is to support only the latest version of
our software, please have your system updated as soon as you
receive notification of a new release.

Page 1

IMS Supplementary Documentation
Foreword

IMS Supplementary Documentation
Changes to the CSG IMS Language

TABLE OF CONTENTC

#COLUMNS . 4
#ROWS 5
Arrays o« . o4 . o4 . . 6
ESC# 8
FMASK . O |
FNAME10
LIST STATUS1
ONGOSUB+12
ONGOTO13
OPEN« o . . .18
SET SINGLEUSER 1%
SET TIMEOUT TO 186
SORT7
ONLOCK18
L0 4 e X

The following pages contain information about new features
and functions as well as changes to existing functions.
These descriptions replace corresponding descriptions in
release B of the CSG IMS documentation.

Page 3

IMS Supplementary Documentation
Changes to the CSG IMS Language

#COLUMNS

USAGE:
#COLUMNS

#COLUMNS (read "number of columns") is a function which
returns a number and may only be used in numeric expressions
(see EXPRESSION).

PURPOSE AND OPERATION:

#COLUMNS returns the number of columns that the user’'s
terminal can display. This information is recorded in the
UTD driver file for the device associated with the user'’s
terminal. This function is useful for specialized display
formatting.

EXAMPLE:
message="Welcome to the Sleepy Hollow"
GOSUB center_message
message="Mailing List System"
GOSUB center_message
END

LABEL center_message
PRINT PADCENTERS(message, #COLUMNS)
RETURN

will output:

Welcome to the Sleepy Hollow
Mailing List System

Page 4

IMS Supplementary Documentation
Changes to the CSG IMS Language

#ROWS

USAGE:
#ROWS

#ROWS (read "number of rows") is a function which returns a
number and may only be used in numeric expressions (see
EXPRESSION).

PURPOSE AND OPERATION:

#ROWS returns the number of lines (or rows) that the user's
terminal can display. This information is recorded in the
UTD driver file for the device associated with the user's
terminal. This function is useful for specialized display
formatting.

EXAMPLE:
LOCATE #ROWS,1
CLEAR LINE

PRINT "Enter your cholice: ";
choice=LIBRARY$(GETKEY)
PRINT choice;

will output:
Enter your choice:

on the bottom row of the terminal, then wait until a single
character is pressed at the keyboard.

Page 5

IMS Supplementary Documentation
Changes to the CSG IMS Language

arravys

USAGE:
identifier(dim 1ist)

where dim 1ist is a list of numbers separated by commas and
identifier is any valid CSG IMS identifier (see also).

PURPOSE AND OPERATION:
Arrays allow for easier manipulation of related items. An
array is simply a collection of similar data items. An
individual item of data in an array is called an element.
Each element is referenced by an index. An array may have
more than one index (or dimension). An array with one
dimension (ie. a(n)) would be like a list. An array with two
dimensions (ie. a(x,y)) would be like a table with rows and
columns. An array with three dimensions (ie. a(x,y,z)) would
be like a list of tables.

The size of an array is determined when the identifier
is declared. A declaration like:

INTEGER a(18@)
will create an array consisting of a list of ten integers.
a(l) refers to the first integer in the list, a(2) the
second and so forth. The declaration:

TEXT n(1@,15) OF 2@
will create an array of 1506 elements (18x15), each element
containing a text value of up to 28 characters.

Entire arrays may be passed as parameters between
CSG IMS program modules. To accomplish this you must follow
these steps:

o Declare the array in the module from which the array
is to passed. ie. INTEGER a(1d,58).

o Pass the array as a parameter to another module using
the CALL statement. The array identifier must be
followed by the open and close parentheses. ie.

CALL spiff(a()).

o The CALLed module must know the number of dimension
that the array being passed to it has. This is
specified by using "dummy" array indexes on the MODULE
declaration line. ie. MODULE spiff(v(l,1}).

Notice that the array may be referred to by a different
identifier in the CALL2d module. This is due to the fact
that array are passed by reference only. Even though an
array may have a different identifier in the CALLing and
CALLed modules, any changes made to the array by the CALLed
program will appear ir the array in the CALLing module.

Fage 6

IMS Supplementary Documentation
Changes to the CSG IMS Language

EXAMPLE:
MODULE foo
INTEGER i

REAL 1ist(1€¢),grid(4,8),threeD(2,2,2)
CALL bar(list(),grid(),threeD())
END

MODULE bar(aryl(l),grid(1l,1),threeD(1,1,1))
END

In this example, any changes made in the module bar to the
array ary() will also appear in the array list{() in the
module foo even though the arrays have different
identifiers. Notice the use of the empty parentheses in the
CALL statement and the use of "dummy" index values in the
called module.

Page 7

IMS Supplementary Documentation
Changes to the CSG IMS Language

ESCH#

USAGE:
ESC#

ESC# (read "escape number”) is a function which returns a
number and may only be used in numeric expressions (see
EXPRESSION).

PURPOSE AND OPERATION:

ESC# returns a permutated value of the ESCAPE function.
When an ENTER statement is executed, the user may terminate
entry of data by typing one of the following four keys:
RETURN or ENTER (ASCII code 13), ESCAPE (ASCII code 27), UP
ARROW (ASCII code 11), or DOWN ARROW (ASCII code 1@). The
ASCII code of this key is then stored internally, and is the
value of the ESCAPE function (see also) when it is eval-
uated. The ESC# function maps the value of ESCAPE into a
number in the range of one to four. The mappings are as
follows:

KEY ESCAPE ESC#
STROKE _ VALUE VALUE
Escape 27 1
Up Arrow 11 2
Down Arrow 1@ 3
Enter /Return 13 4

This function is useful in conjunction with screen form
programs, since it may be used to go forward or backwards
when ENTERing fields in a form.

EXAMPLE:
LOOP
LABEL enter_name
ENTER maillist.name
ON ESC# GOTO finished,enter_comment
LABEL enter_country
ENTER maillist.country
ON ESC# GOTO finished,enter_name
LABEL enter_comment
ENTER maillist.comment
ON ESC# GOTO £finished,enter_country
ENDLOOP
LABEL finished
RETURN

Note that the ON ESC# GOTO statement in the above example
will simply continue execution at the next line when ESC#
has a value of three or four (ie. RETURN or DOWN ARROW are
pressed). When the escape key is pressed, ESC# will have a
vaiue of one causing execution to continue at the label
finished. When the return key is pressed, E5C# will have a
value of *two causing execution to continue at the previous
ENTER statement.

IMS Supplementary Documentation
Changes to the CSG IMS Language

FMASK

USAGE:
FMASK(n)
or
FMASK($)
where n is a number greater than zero and § is a text -value
representing the name of a field.

PURPOSE AND OPERATION:

FMASK returns the mask (see also) of field number n in the
current file. If no mask was specified when the file was
created, FMASK will return a null string (""). n must be
greater than zero and less than or equal to the number of
fields in the file. If n is less than one or greater thanm
the number of fields in the file, an error number 44 will
result.

If FMASK is called with a text argument ie.
FMASK("name"), CSG IMS will return the mask of the named
field in the current file. If the named field cannot be
found in the current file, an error number 44 will result.

EXAMPLE:
NOTE file "books" has fields dewey, cutter, title,
NOTE and author
INTEGER n
OPEN *books"
PRINT "Fieldname Default Mask"”

PRINT " -
SET TRAP TO trap44
n=1
LOOP
PRINT FNAME(n); TAB(25);
IF FMASK(n)="" THEN
PRINT "none”
ELSE
PRINT FMASK(n)
ENDIF
n=n+1l
ENDLOOP
LABEL modend
END
LABEL trap44
RESUME AT modend

will result in:

Fieldname Default Mask
dewey #1%. 3
cutter $e884
title none
author none

See the example for FNAME for more information.

Page 9

IMS Supplementary Documentation
Changes to the CSG IMS Language

FNAME

USAGE:
FNAME (n)
where n is a number greater than zero.

PURPOSE AND OPERATION:

FNAME returns the name of field number n in the current
£ile. FNAME(1l) would return the name of the first field,
FNAME(2) would return the name of the second field and so
on. If n is less than one or greater than the number of
fields in the current file, an error number 44 will result.

EXAMPLE:
NOTE file "books" has fields dewey, cutter, title,
NOTE and author
INTEGER n
OPEN "books"
PRINT "Fields in file 'books':"
n=1
SET TRAP TO trap44
LOOP
PRINT FNAME(n)
n=n+1l
ENDLOOP
LABEL modend
END

LABEL trap44
RESUME AT modend

will result in:

Fields in file 'books:
dewey
cutter
title
author

Page 14

IMS Supplementary Documentation
Changes to the CSG IMS Language
ILLIST STATUS

USAGE:
LIST STATUS

PURPOSE AND OPERATION:
LIST STATUS lists the status and values of the SET options.

EXAMPLE:
IMS:LIST STATUS
SCREEN = ON
INPUT = OFF
PRINT = ON
SINGLE = OFF
DATE =Md, Y
TOP MARGIN =3
BOTTOM MARGIN = 62
LEFT MARGIN = 18
RIGHT MARGIN = 90

el
[+
Vo]
m
}r
o

IMS Supplementary Documentation
Changes to the CSG IMS Language

ON ... GOSUB ... RETURN

USAGE:
ON n GOSUB labell, label2, . . . labeln

where n is a numeric expression and labell, label2, .
labeln is a list of zero or more labels (see LABEL).

PURPOSE AND OPERATION:

ON GOSUB performs an indexed multiway branch to subroutines.
The numeric expression n is evaluated, and depending on its
result, only one of the subroutines referenced by the list
of labels will be chosen. If n is 1, the subroutine at
labell is executed; if n is 2, the subroutine at label? is
executed, and so on. If n is less than or equal to zero, or
if n is larger than the number of labels in the list, none
of the subroutines are called and execution continues at the
first statement following the ON GOSUB.

EXAMPLE:

LOOP
CLEAR SCREEN
PRINT "1) Enter check transactions"”
PRINT "2) Enter deposit transactions”
PRINT "3) Print account statement”
PRINT "4) Quit this session"
PRINT .
PRINT "Your selection: ";
INPUT choice
ON choice GOSUB checks,deposits,report.quit

ENDLOOP o

LABEL checks
RETURN

LABEL quit
END

Page 12

IMS Supplementary Documentation
Changes to the CSG IMS Language

ON ... GOTO . ..

USAGE:
ON n GOTO 1labell, 1label2, . . . labeln

where n is a numeric expression and labell, label2,
labeln is a list of zero or more labels (see LABEL).

PURPOSE AND OPERATION:

ON GOTO performs a simple indexed multiway unconditional
branch. The numeric expression n is evaluated, and depending
on its result, only one of the destinations referenced by
the list of labels will be chosen. If n is less than or
equal to zero, or n is greater than the number of labels in
the list, execution continues at the first statement
following the ON GOTO. If n is 1, execution continues at
labell; if n is 2, execution continues at label2, and so on.

EXAMPLE:
LABEL menu
CLEAR SCREEN
PRINT "1) Enter check transactions”
PRINT "2) Enter deposit transactions®
PRINT "3) Print account statement”
PRINT "4) Quit this session"
PRINT
PRINT "Your selection: ";
INPUT choice
ON choice GOTO checks,deposits,report,quit
PRINT "Invalid selection; press any key.";
PRINT LIBRARYS$S(GETKEY)
GOTO menu

LABEL checks

éOTO menu
LABEL quit
END

Page 13

IMS Supplementary Documentation
Changes to the CSG IMS Language

OPEN

USAGE:
OPEN "pathlist" FOR READ AS file tag

where pathlist is the name of a CSG IMS database, FOR READ
is optional, and AS file tag specifies a file identifier and
is optional.

PURPOSE AND OPERATION:

OPEN causes CSG IMS to OPEN the database named in pathlist,
with file tag being the name for the file in the module. If
the AS file tag clause is not present, the filename will be
the file tag. The FOR READ clause causes IMS to allow only
read type operations on the OPENed file. The current record
of a file opened for read only will not be locked so that
other processes will be able to access it.

You must OPEN a file before attempting to access the
information in the file. An open file is referred to by its
file tag. Files that are OPENed should be CLOSEd (see also)
before exiting your program or exiting the Interactive Mode.

EXAMPLE:
OPEN "DATA/vendor.list" AS VENDORS

causes CSG IMS to OPEN the file vendor.list.ida and
vendor.list.iin in the directory DATA and creates the file
tag VENDORS for that file.

OPEN "members" FOR READ
LIST
CLOSE FILE members

causes CSG IMS to open the file members for read access only

and creates the file tag members for that file. The file is
then LISTed and subsequently CLOSEG.

Page 14

IMS Supplementary Documentation
Changes to the CSG IMS Language

SET SINGLE USER

USAGE:
SET SINGLE USER ON/OFF

PURPOSE AND OPERATION:
SET SINGLE USER permits the user to disable file header
updating in applications where no other users will be
accessing a file, significantly improving data access time.
SET SINGLE USER ON
will disable header updating on all OPEN and subsequently
OPENed files until a
SET SINGLE USER OFF
is issued, returning operation to normal multi-user access.

CAVEATS:

While SINGLE USER is SET to ON, files may remain locked.
Multi-user access to a file when SINGLE USER is ON could
result in damage to the file structure.

Page 15

IMS Supplementary Documentation
Changes to the CSG IMS Language

SET TIMEOUT TO

USAGE:

SET TIMEOUT TO n
where n is a number greater than or equal to zero and less
than or equal to 65535.

PURPOSE AND OPERATION:

SET TIMEOQOUT TO n sets the length of time that CSG IMS will
wait for a locked record to become unlocked before reporting
an error. n represents the number of operating system ticks
that CSG IMS will wait. On most 0S59/6889 Level Two systems a
tick is 1/190 of a second. TIMEOUT is initially set to zero
when CSG IMS is executed. If n is zero a process will wait
indefinitely to read a locked record. An n of one will cause
CSG IMS to report error 252 (record locked) immediately on
attempting to read a locked record. SET TIMEOUT to n affects
only the file which is current at the time the SET is
executed so each file can have a different timeout value.

Page 16

IMS Supplementary Documentation
Changes to the CSG IMS Language

SORT

USAGE:
SORT file tag key clause ON exp TO filename range

where file tag and key tag are optional and refer to the
file to sort (see FILE TAG and KEY TAG). exp is the
expression to sort by and filename is a text expression
which evaluates to an IMS file name. range specifies the
range of records to sort (see RANGE).

PURPOSE AND OPERATION:

SORT will sort an IMS data file by any expression consisting
of field name(s) and/or operator(s). A new file will be
created with the same structure as the file to be sorted.
The records in the new file will be physically ordered
according to the sort expression. No indexes will be
created for the new file.

CAVEATS:

When sorting it is important to use as much memory as
possible as it improves performance. When using CSG IMS in
the interactive mode it is possible to use up to 32K bytes
of memory (ie. IMSI #32K).

EXAMPLE:
0S9:IMSI #32K
IMS:0PEN 'gl.batch!
IMS:SORT ON glcode TO 'gl.batch.srt' FOR glsource='AR’'
IMS:OPEN 'gl.batch.srt’
IMS:LIST

This example causes IMS to create the file gl.batch.srt with
the same record structure as gl.batch. After the SORT,
gl.batch.srt will contain any records in gl.batch where the
field glsource contains "AR" in sequenced according to the
contents of glcode.

Page 17

IMS Supplementary Documentation
Changes to the CSG IMS Language

UNIL.OCK

USAGE:
UNLOCK file tag

where file tag is optional and refers to an already OPENed
file.

PURPOSE AND OPERATION:

UNLOCK releases control of the current record of the
specified file. If file tag is not present, the current
record of the current file is released. This is useful when
a data base is belng accessed by several users, in order to
allow more than one user to read the same record without
causing lockouts.

When CSG IMS reads a record in a file, that record
becomes locked until it has been updated or a different
record is read. Using UNLOCK forces CSG IMS to unlock the
last read record allowing it to be accessed by other users.

EXAMPLE:
OPEN 'maillist®
FIND KEY name APPROX 'G!
PRINT record, maillist.name
UNLOCK FILE maillist

will find the first name in "maillist" starting with "G",
print it out, then release that record so that other users
can read or process it.

IMS Supplementary Documentation
Changes to the CSG IMS Language

uTrTD

USAGE:
UTD function

where function is one of the following universal terminal
driver functions:

ADDRESS r.,c

BOX ril,cl,r2,c2

CLL

CLS

DOWN

FULL

HALF

INIT

LEFT

NORMAL

REVERSE

RIGHT

up

where r, ¢, rl1, cl, r2, and ¢2 are numeric expressions.

PURPOSE AND USAGE:

The UTD function provides access to various facilities
provided by the universal terminal driver (UTD). For
complete information on the UTD, refer to the appendix and
also the the UTD usage addendum in this document. The
various functions are:

1. ADDRESS r.c
Absolute cursor address. This statement is identical to
the LOCATE statement. See that entry in the reference
manual for details.

2. BOX ri,cl,r2,c2
Box draw. This statement draws a simple rectangular box
whose diagonal corners are at the absolute screen
position ri,cl1, and r2,c2 respectively. The top left
corner of the screen is assumed to be 1,1.

3. CLL
Clear line from cursor to end of line. This is identical
to the CLEAR LINE statement, described in the reference
manual.

4. CLS
Clear screen. This is identical to the CLEAR SCREEN
statement, described in the reference manual.

5. DOWN
Cursor down. This UTD function moves the cursor down by
exactly one line.

6. FULL
Full intensity. This statement switches the terminal to
displaying characters in full intensity video attribute.

Page 19

1@.

11.

12.

13.

IMS Supplementary Documentation
Changes to the CSG IMS Language

HALF

Half intensity. This UTD function is the complement to
the UTD FULL statement; it causes characters to be
displayed in the half intensity video attribute.

INIT

Terminal initialization. This UTD function initializes
or resets the terminal to the default video mode(s)
and/or attribute(s) required by the UTD.

LEFT

Cursor left. This statement moves the cursor exactly one
character position to the left.

NORMAL

Normal video. This statement turns off the reverse video
attribute, described below.

REVERSE

Reverse video. This UTD function turns on the reverse
video attribute for the terminal.

RIGHT

Cursor right. This statement moves the cursor exactly
one character position to the right.

up

Cursor up. This UTD function moves the cursor up exactly
one line.

Page 28

IMS Supplementary Documentation
Changes to the Text Editor

Several small changes have been made to the text editor (tx)
to make it even more useful.

OVERWRITE MODE

Overwrite Mode is selected from the new Option Menu (~0).
When Overwrite Mcde is on, a character typed on the keyboard
will replace the character under the cursor. Indent is now
controlled from the Option Menu.

FIND/REPLACE

The find/replace definition sequence has been improved. The
Define function in the Find function menu has a slightly
different operation than is described in the manual; it no
longer prompts the user to find all occurrences, and returns
to text mode when definition is complete. Additionally, when
a replacement string is defined, performing a find next or
find previous will prompt the user with the string "replace
text (Y/N*/A) ?", where "A" stands for "all". Selecting
"all" replaces all subsequent occurrences of the find search
string without further prompting.

FUNCTION KEY SUPPORT

The user may now redefine the control keys used by tx and
also make use of special function keys on most terminals.
See the chapter on "Using the Universal Terminal Driver" for
further information.

Page 21

IMS Supplementary Documentation
Changes to the Text Editor

Page 22 .

IMS Supplementary Documentation
Revision History
JULY 31, 1986 ~ Version 1.3 Released

o function key support added to UTD. Utilized by tx, imsF
and insR.

o LIST STATUS command added. Lists the current valuec of
SET variables that are not otherwise accessible.

o imsD changed to create data files such that strings are
at the end of the data record for compatibility with
688@¢ version. Only files created with imsD version 1.3
will be completely portable with 68082 versions of
CSG IMS. Files created on earlier version may require
conversion.

o FNAME(n) and FMASK(n) functions added.

o SORT statement added using heap sort and merging

o SET SINGLE USER ON/OFF added for faster single user
operations.

MARCH 1986 - Version 1.2 Released
O array passing capability added.
o Options Menu added to tx.
o Find function in tx slightly enhanced.

© tutd and device utilities added to improve
functionality of UTD.

o TVI 955 132 column support added to UTD.

o SET TIMEOUT TO n added to enhance multi-user file
access capability.

o UNLOCK added to enhance multi-user file access
capability.

o UP ARROW and DOWN ARROW added to ENTER function, to
allows backtracking through fields in a form.

o #COLUMNS, #ROWS, ESC# functions added.

© ON n GOTC, ON n GOSUB and UTD function access added.
FEBRUARY 1986 - Version 1.1 Released

o Index Structure changed from BTree to concurrent

B+Tree. Re-index of databases from version 1.8
required.

Page 22

IMS Supplementary Documentation
Revision History

o FOR READ clause added to OPEN statement for enhanced
multi-user access capability.

JANUARY 1986 - Version 1.8 Released

Fage 24

IMS Supplementary Documentation
Errata

CSG IMS Manual Revisions and Corrections to Release B

Tutorial, Page 1

The fourth paragraph states that the DEL key is used to
delete characters when a line of text is input. With the
latest release of CSG IMS, only the editing programs (tx,
imsF, imsR) use the DEL key for character deletion. All
other portions the package use the standard 0S9 backspace
character for character deletion.

Totorial, Page 4

As the maillist program is supplied, the screen shown
opposite of page 4 will not be what is displayed when the
program is first invoked. To get this screen, type ESC L
(last record) and ESC P (previous record) when the maillist
program first comes up.

Tutorial, Page 37

The alteration to the line "al = al + check_data.gross”
should not be implemented if the check report is to operate
correctly.

Tutorial, Page 61

The result given as the standard deviation is indeed the
standard deviation of that list of six numbers. However, the
program, as written, calculates the population deviation,
which means the result printed should be 4.4@912¢3987356,
rather than 4.8249578279365.

Appendices, Page 1
The given list of f£iles which should be in the CMDS
directory should imclude all of the following files:

ims the executive (menu)

imsI the interpreter

imsC the compiler

imsD the file creator

imsF the screen form editor

imsR the report generator
imsR.statements statements used by program generator
imsErrs error message file

tx text editor

mkterm terminal driver editor
assoc terminal association editor
nmall UTD utility

device UTD utility

tutd UTD utility

tname UTD utility

maillist program for lesson 1

If the file csg_imsl appears in your execution cdirectory, it
may be deleted as it is no longer required.

Page 25

IMS SupplemeEEgg¥aDocumentation

Page 26

IMS Supplementary Documentation
Using the Universal Terminal Driver

1 Terminal Driver Usage Refe C

The universal terminal driver (UTD, is a system developed by
Clearbrook Software Group (CSG) in order to allow for termi-
nal independent display functions. The UTD in fact supports
a fairly wide variety of terminal functions, but not all CSG
software utilizes all of these functions.

The basic operation of the UTD is simply to reference a
small table of conversion strings and numbers whenever a
particular function is required of it. When the UTD is
initialized, it reads this table from a file in the UTD
directory in the execution directory. The file is named
after the 0S9 device the terminal is attached to. The files
in the UTD directory are referred to as terminal-driver
associations. Within the UTD directory is the
UTD_DRIVER_FILES directory. This contains the basic tables
for individual terminal models. These files are also know as
driver files.

The UTD comes with six support programs necessary in order
to utilitize the UTD. These are: mkterm, assoc, tname,
nmall, device, and tutd. Their purpose and use is as
follows:

1) mkterm -
Svntax:
0S9:mkterm [<(source_driver> [(destination_driver)>]}]

This program allows a driver file to be created
and/or modified. It is necessary if the driver for a
particular terminal model is not on the distribution
diskette, or if one wants to experiment with exist-
ing drivers to achieve different effects. For a com-
plete explanation of how to use the program and how
to set up a custom driver file, see the text below
these descriptions.

X :
0S9:mkterm ; * edit a blank driver
0S9:mkterm tvi_918@ ; * create TVI918 driver
O0S9:mkterm tvi_91& qvt_102 ; * create QVT182 driver

*

0S89: based on TVI91#@ driver.

Page 27

2) assoc

IMS Supplementary Documentation
Using the Universal Terminal Driver

Syntax:

0S9:assoc <(device> [<(driver)]

Descriptiopn:

m

3) nmall

This program is used to define a terminal-driver
association. This program pust be used when install-
ing the software in order to let the UTD know what
driver files each terminal uses. If two parameters
are given, an asscciation between those two items is
made. If only one parameter is given, the existing
association with that device is deleted. Each time
the driver for an existing terminal-driver associa-
tion is altered (I.E. - edited with mkterm), this
command pust be reapplied to it.

059:assoc term vtl@@ ;* /term associated with VT1g@
0S9:assoc tl qvt_102 ;* /tl attached to a QVT1@2
0S9:assoc tl ;* delete /tl association

0S9:nmall

This program is simply a utility for viewing data
regarding the current state of the UTD. It will
first list out the currently defined 0S9 terminal
devices (but not their associations), then it will
list the UTD drivers that are defined.

es:
0S9:nmall

Universal Terminal Driver defined devices:

term

Universal Terminal Driver defined driver files:

gvt_192
tvi_91¢@
vt1l0@

Page 28

IMS Supplementary Documentation
Using the Universal Terminal Driver

4) tname -
tax:
0S9:tname {<{(device>}

Description:
This program, like nmall, is simply a utility for
viewing data regarding the current state of the UTD.
Specifically, tname is used to see what the current
terminal-driver associations are for the list of 0S9
devices given as parameters to the command.

0S9:tname term tl ;* ask for /term and /tl
term is associated with vt16@
tl is not defined

5) device -
0589:device
This program is a utility designed to simplify the

use of the UTD. When invoked, it will print the name
of the 0S9 device to which path 1 has been opened.

I.E. - it tells you the name of your terminal.
OSS:éevice ; * ask for device name on path 1
TERM
6) tutd -
059: tutd
Description:

This program is another utility for use with the
UTD. It is used to test whether a driver for a
specific terminal model works correctly. It is self
prompting, and the actions it performs should indi-
cate whether or not a particular terminal function
was correctly implemented in the driver file. Note
that tutd expects to have the terminal it operates
on to have been associated with a driver file.

089:tutd ; * self prompting from this point.

Page 29

IMS Supplementary Documentation
Using the Universal Terminal Driver

When CSG-supplied software utilizes the UTD, part of the in-
stallation process includes configuring the UTD to work with
your particular terminals. To start off, find out what driv-
ers were provided on the distribution diskette by typing
nmall at the shell prompt. If you see the terminal model(s)
for the terminal(s) attached to your system in the resultant
list, simply associate them to the appropriate terminal
devices.

For example, if a DEC VT10@ is attached to "/term", and a
QUME QVT182 is attached to "/t@", type the following
commands:

0S9:assoc term vtl@Q
0S9:assoc t@ qvt_1@2

This must be done for each terminal on your system on which
the software will used.

If any of the driver files needed for the terminals on yeour
system are not included, you will have to create them your-
self using mkterm. Suppose one of the terminals you have for
which the UTD has no driver file is a TeleVideo TVI91@. Type
the following command at the shell prompt:

0S9:mkterm tvi_91@

The program will print the following menu:

— Number of rows. ']
~ Number of columns. g
- Terminal initialization. -—
- Cursor up. -

Cursor down. -
- Cursor left. -
- Cursor right. -
- New line. -
- Clear screen and home cursor. -
18 - Clear from cursor to end of line. --
11 - Reverse video. -
12 - Normal video. -
13 - Half intensity. -
14 - Full intensity. -
18 - Scroll screen up. -
16 - Scroll screen down. -
17 - Insert line at cursor. -
18 - Delete line under cursor. -
13 - Menu 1

2@ - Keystroke definitions

WONOWU.EWN R
[}

Your selection (or type exit) ?

Page 2@

IMS Supplementary Documentation
Using the Universal Terminal Driver

The information for items 1-18 should be entered. To enter
or alter a particular item, type the number of the item at
the prompt, then press carriage revarn. You should define as
many of these items as possible. CSG software using the UTD
will try to emulate a particular terminal function if the
UTD driver does not have that function defined. If it so
happens that a terminal does not support a particular item,
leave it blank. But there are some functions which the soft-
ware must have defined if is to work correctly; using the
tutd program will inform you which functions need to be de-
fined and which are opticnal. Enter the appropriate data in
the manner described in the following paragraphs.

When you have finished entry of items, or wish to save or
quit, type the word "exit". Mkterm will prompt:

Do you want the current changes saved ?

Type the word "yes" in response. The program will then
confirm the name of the driver:

Save as tvi_918 ?

Again, answer yes. This will terminate the current mkterm
session.

Items 1 and 2 are the row and column dimensions, respec-
tively. When these are selected for entry, simply enter an
unsigned decimal integer. For the TVI918, there are 24 rows
and 8@ columns.

For items 3 through 18, a string describing that terminal
function must be entered. This string is the sequence of
ASCII characters which are required to perform that particu-
lar function on the terminal in question. This string may in
fact be entered as a line of text; the corresponding ASCII
characters are read from standard input. Since most terminal
functions require the use of control characters, and the
string is read with 0S9 line editing features enabled, there
are a number of mechanisms available to allow the entry of
otherwise unprintable characters.

The first of these is a caret (~) placed in front of a
character. When this appears, the corresponding control code
of that character is substituted. For example, “m is
carriage return.

The second mechanism is the hex literal. This is specified
with $XX where X is a hexadecimal character. This allows a
non—-printable non-control character to be defined. For

example, $41 is A (capitol a), and $@d4 is carriage return.
If X is not a hexadecimal character, it is assumed to be &.

Page 31

IMS Supplementary Documentation
Using the Universal Terminal Driver

The third and final mechanism is the backslash (\). This is
used to permit the specification of characters which other-
wise have lexical significance to the above specification
mechanisms. Thus, \", \$, and \\ must be used to specify
the ~, $, and \ characters in a string.

So, the strings for terminal items 3 through 18 on the
TVI9l@ are:

3) Terminal initialization -
This function is simply a general purpose initialization
and/or reset. If your terminal does not automatically
wrap around at the end of a line, use this function to
set wrap around on. It is not necessary to define it for
the TVIS1d.

4) Cursor up -
This function string will move the cursor up by exactly
one line; the column position will not be affected. If
the cursor is at the top line cof the display, the effect
of this string is allowed to be undefined. For the
TVI91@, enter the string "~K". When you are prompted to
enter the string, do not enter the double quotes.

5) Cursor down -
This function string will move the cursor down one line;
the column position will remain unchanged. If the cursor
is at the bottom line of the display, this string is
allowed to have undefined results. The corresponding
string for the TVI910 is "~J". Again, don't include the
quotes.

6) Cursor left -~
This function string will move the cursor one character
to the left. The string for the TVI910 is "~H". At the
leftmost column, the cursor should wrap around to the
end of the previous line.

7) Cursor right -
This function string will move the cursor one character
to the right. The string for the TVI91g is "~H". At the
rightmost column, the cursor should wrap around to the
start of the next line.

8) New line -
This function should position the cursor at the start of
the next line. If the cursor is already at the bottom
line of the display, the screen should scroll up one
line as well. The corresponding string for the TVI914
is "~_".

Page 32

)

1@)

11

12)

13)

14)

15)

IMS Supplementary Documentation
Using the Universal Terminal Driver

Clear screen and home cursor -

This function should erase the entire display and place
the cursor at the top left corner of the display. The
string for the TVI91@ is "~2".

Clear from cursor to end of line -

This function erases the characters lying between the
cursor and the end of the line the cursor is on,
inclusive. The position of the cursor remains unchanged.
The corresponding string for the TVI918 is "~(T". Note
that the ~[is the UTD's notation for the escape code
(ESC, $1b). Once again, don't include the quotes.

Reverse video -

This should initiate the reverse video attribute. It is
not assumed that this attribute will be transparent, and
it will not be assumed that it will be able to extend
over more than one line while it is invoked. In all
practicality, this could be defined in fact to be any
video attribute; it is merely known to the UTD by this
name. The string for the TVI91d is "~[G4".

Normal video -

This function should terminate the reverse video
attribute. The same provisos for that item apply here as
well. The string for the TVI919 is "~[G@".

Half intensity -

This function should initiate the half-intemsity video
attribute. It ig assumed that it will be transparent to
the terminal; I.E. - any random character on the screen
can be printed while this attribute is on. As for the
name of half intensity, it is merely the UTD's reference
to the attribute. It may in all practicality be any
transparent attribute. The string for the TVIZ1@ is

el O R

Full intensity -
This function should terminate the half-intensity video
attribute. The string for the TVIS1@ is "~[(".

Scroll screen up -

This function should scroll all the text on the screen
up by one line. There is no required position of the
cursor upon completion. The string for the TVI91@ is
"[=70 ". Note that there is a space imbedded in this
string. What this string does is address the cursor to
the bottom right corner of the screen, then prints a
space. Other terminals may or may not be able to use
this strategy.

Page 33

IMS Supplementary Documentation
Using the Universal Terminal Driver

16) Scroll screen down -
This function should scroll the text on the screen down
by one line. The placement of the cuarsor is allowed to
be undefined upon completion. This function is not
available on the TVI914.

17) Insert line at cursor -
This function should move all text lines from the cursor
below down exactly one line. This includes the line the
cursor is on. The line thus inserted should also be
blank. The placement of the cursor upon completion need
not be defined. The TVI91¢ does not support this
function.

18) Delete line under cursor -
This function should move all lines immediately below
the one on which the cursor is up exactly one line. The
bottom line of the display should erased. The TVI91@
does not support this function.

When you have completed filling in these items, choose item
19, to go to the following menu:

1 - Box drawing lead in sequence -
2 - Box drawing termination -
3 - Box string: upper left cornmer --
4 - Box string: lower left corper --
5 - Box string: upper right corner --
6 - Box string: lower right corner —-
7 - Box string: vertical bar -—
8 - Box string: horizontal bar -
9 - Box string: downward T -
1@ - Box string: upward T -
11 - Box string: left T -
12 - Box string: right T -
13 - Box string: crosshair -
14 - Address the cursor. == l=-3-1 — [-;-;-) —
15 - Menu 1

16 - Keystroke definition

Your selection (or type exit) ?

This menu allows you to define two kinds of functions: box
drawing and cursor addressing. The 13 selections which
relate to boxes are used by some CSG software for the
purpose of simple graphics. While many terminals don't have
special line or box drawing characters or modes, it is
probably a good idea to define these items anyway. For
instance, the TVI91@ does not have any such special char-
acters. What will be used for them instead are other ASCII
characters, which are printed in half-intensity. Using such
a method, it should still be possible then for simple term-
inals to support a kludge for true line and box drawing.

Page 34

1)

2)

3)

4)

5)

6)

7)

8)

9)

18)

IMS Supplementary Documentation
Using the Universal Terminal Driver

Box drawing leadin sequence -

This function initiates the gr-phics mode or special
characters or video attribute or whatever is needed to
start drawing box characters on the terminal screen. The
TVI918 does not have any special graphics characters,
but it does have a transparent videc attribute (half
intensity) which can be used to distinguish box
characters from others. The string for the TVI91@ then
is "~

Box drawing termination -

This function is the complement of the above function;
it terminate the special character mode or video
attribute or whatever is used to initiate the box
drawing mode. For the TVI910@, this means returning to
full intensity, which is done with the string "~[(".
Box string: upper left corner -

This string should be the character sequence which
prints a single character on the screen which should
appear as the upper left hand corner of a box. Since the
TVI912 has no special characters, use the string "+".

Box string: lower left corner -

This string should print a character which appears as
the lower left hand corner of a box. Use "+" for the
TVIgl

Box string: upper right corner -

This should print a character which represents the upper
right hand corner of a box on the display. For the
TVI91¢ this should be "+".

Box string: lower right corner -

This should print a character which appears as the lower
right hand corner of a box on the display. Use the
string "+" for the TVI91@.

Box string: vertical bar -

This should print a character which represents a
vertical line on the screen. For the TVI%18, this should
be ™",

Box string: horizontal bar -

This should print a character which appears as a
horizontal line. The string for the TVIS1l@® should
be "-",

Box string: downward T -

This shculd print a character which would logically
result from the intersection of a horizontal bar and the
bottom half of a vertical bar. The string for the TVI9l@
should be "+".

Box string: upward T -

Page 35

1)

12)

13)

13)

IMS Supplementary Documentation
Using the Universal Terminal Driver

This should print a character which would logically
result from the intersection of a horizontal bar and the
top half of a vertical bar. The string for the TVI91lg
should be "+",

Box string: left T -

This should print a character which would logically
result from the intersection of a vertical bar and the
left half of a horizontal bar. The string for the TVI91@
should be "+",

Box string: right T -

This should print a character which would logically
result from the intersection of a vertical bar and the
right half of a horizontal bar. The string for the
TVI91@ should be "+",

Box string: crosshair -

This should print a character which would logically
result from intersecting the vertical and horizontal bar
characters. For the TVI918, use the string "+".

Cursor Addressing -

This function is among the more complex of the functions
which terminals support. Selecting this item will cause
a prompt for the "leadin sequence®. This is the initial
string by which the terminal knows it is supposed to
address the cursor. For the TVI91#, this string is

L L

You will next be prompted for a coordinate specific-
ation. This is a method of specifying how an actual
cursor coordinate is sent to the terminal. It consists
of: row or column selection (S), addressing type (T),
and coordinate offset (0). The UTD assumes that the top
left corner of the screen is address 0.8.

In order to enter a coordinate specification, it must be
typed in the form S;T;0 at the appropriate prompt. S may
be R for row or C for column. T is a decimal integer in
the range of 1 to 15. O is a decimal integer in the
range @ to 255. The addressing types supported by the
UTD are:

1) Linear transformation; the coordinate is sent as
a binary byte. The TVI91@ is one terminal with
this type of addressing.

2) ASCII string; the coordinate is converted to an
unsigned string of ASCII digits and sent to the
terminal. Any ANSI standard terminal uses this
type of addressing.

Page 36

IMS Supplementary Documentation
Using the Universal Terminal Driver

3) BCD transformation; the coordinate is converted
from a binary to a BCD byte. The column coordin-
ate of the ADDS_25 is one terminal with this
addressing type.

4) 8@/132 column irregular transformation; this
type is characterized by the requirement that
for a terminal with 132 columns, the middle se-
quence string for a column address of less than
8@ is different than the leadin string when the
column address is greater or equal to 82. It
causes the tilde () to be the middle sequence
string when the column coordinate is greater or
egual to 80; otherwise it is null. One terminal
with this type is the TeleVideo TVI955 when it
is in 132 column mode.

The TVI91d expects the row coordinate first, as a binary
byte, and with an offset of 32 added to it. Thus, type
Rz1:32 when mkterm prompts for the coordinate
specification.

Next, many terminals require a string between the two
cursor coordinate specifications. This is not the case
for the TVI91@, so in this instance simply press
carriage return.

At this point the second coordinate specification must
be entered, as described above. For the TVI91@, the
second coordinate is the column, transformed linearly
with an offset of 32. Thus, the specification is:

C:i1:32.

Finally, many terminals also require a string to
indicate the end of the cursor addressing function. The
TVI91@ requires none, so simply press carriage return at
this point.

IMS Supplementary Documentation
Using the Universal Terminal Driver

When these items have been completed, choose item 16; the
following menu should appear:

1 - Abort (Default = “A) -
2 - Block mode (Default = ~B) -
3 - Insert character (Default = ~C) -
4 - Delete under cursor (Default = “D) --
5 — End of text (Default = “E) -
6 - Find/replace menu (Default = “~F) -
7 — Cursor left (Default = ~H) il
8 — Insert line (Default = *~I) -
9 — Cursor down (Default = ~J) -

1@ - Cursor up (Default = “X) -
11 - Cursor right (Default = “L) -
12 - New line (Default = “M) -
13 - Next screen (Default = ~N) -
14 - Options menu (Default = ~0) -
15 - Previous screen (Default = “P) -
16 - Undelete character (Default = “U) --
17 - Delete line (Default = ~X) -
18 - I/0 menu (Default = ESCAPE) -
19 - Start of text (Default = HOME) -—
28 - Delete character (Default = DEL) -
21 - Menu 1

22 - Menu 2

Your selection (or type exit) ?

This menu allows you to define alternate keys for particular
editor functions; I.E. - you can assign function keys to
specific editor functions. Note that since these key
definitions are made in the driver for a particular terminal
model, all devices associated with that terminal driver will
have the same key-definitions. Note also that for the
particular CSG software package you have received, not all
of the functions given in the menu may be supported. Since
the UTD is a general purpose item included in many CSG
products, though, all of the possible key functions are
listed.

The ability to assign editor functions to different function
keys is very useful indeed. For instance, the cursor keys of
a DEC VT1088 terminal each output a 3-character code; re-
defining the cursor up, cursor down, cursor left and cursor
right functions (items 18, 9, 7, and 11 respectively) to
these codes would allow the editors to use the cursor keys
of the VT1€@. In addition, the HOME key and PF1 through PF4
keys could also be assigned specific editor functions.

To redefine an editor function, type the number of the
desired item at the menu prompt and press return. Then
simply type the string of ASCII characters which the

function key, to which you are assigning the function,

Page 138

IMS Supplementary Documentation
Using the Universal Terminal Driver

should produce and press return. This string is in the
format defined previously; it may include the various
character-conversion mechanisms.

Using the TVI91@ as an example, it turns out that all the
editor functions can be accessed with existing control keys
and other dedicated function keys. However, it has been.
found that it is convenient if the BACK TAB key is assigned
to the function of end of text (item 5). Here then are the
descriptions of the various functions, as well as the
redefinition of the BACK TAB key:

1) Abort (Default = “A) -
This function interrupts any operation using 0S9's QUIT
function supported in SCF devices. Because of this, this
function must be exactly one character, and no other
function can be defined using a function key sending
this character.

2) Block mode (Default = “B) -
Only in tx does this enter block mode; in imsF (from the
CSG IMS package) it enters the box drawing menu, and in
imsR (from CSG IMS) it enters the border redefinition
menu.

3) Insert character (Default = ~C) -
This function is used to insert a blank character; it is
not used in tx.

4) Delete under cursor (Default = ~D) -
This deletes the character the cursor is currently on.

5) End of text (Default = “E) -
This function moves the cursor to the end of the 1line,
screen, then file. To assign end of text to BACK TAB
(ESC I), type the string "~[I", as usual without the
quotes.

6) Find/replace menu (Default = “F) -
This initiates a functicn menu; on tx it is the
find/replace menu, or field placement menus in imsF and
imsR.

7) Cursor left (Default = “H) -
This moves the cursor one character to the left, with
cursor wrap around to the previous line.

8) Insert line (Default = ~I) -
This inserts a blank line, scrolling down the lines bhe-
low the cursor. Not 311 CSG software has this function.

9) Cursor down (Default = ~J) -

This function moves the curscr down one line, scrolling
the contents of the screen if necessary.

Page 29

IMS Supplementary Documentation
Using the Universal Terminal Driver

128) Cursor up (Default = “K) -
This function moves the cursor up one line, scrolling
the contents of the screen if necessary.

11) Cursor right (Default = “L) -
This moves the cursor one character to the left, with
cursor wrap around to the previous line.

12) New line (Default = ~M) -
This function places the cursor at the start of the next
text line; in tx it creates a new text line as well.

13) Next screen (Default = ~N) -
This function causes the program to go to the next
screen of text lines.

14) Options menu (Default = ~0) -
This initiates a menu which allows various operational
parameters to be controlled. It is available only in tx.

15) Previous screen (Default = “P) -
This function causes the program to go to the previous
screen of text lines.

16) Undelete character (Default = *U) -
This function inserts characters previously deleted with
the DEL or ~D deletion functions. It is available only
in tzx.

17) Delete line (Default = ~X) -~
This function deletes the line that the cursor is on.

18) I/0 menu (Default = ESCAPE) -
This initiates a menu which is generally used for
selecting input/output functions.

19) Start of text (Default = HOME) -
This function moves the cursor to the start of the line,
screen, then file.

28) Delete character (Default = DEL) -
This function deletes the character to immediate left of
the cursor.

After completing this procedure, you will have created a
driver file for the TeleVideo TVI914 terminal. Be sure to
save it when you exit. Once it is saved, you must associate
the 0S9 devices to which your TVI914 terminals are attached
with tvi_918. Just to be sure you have defined the driver
file correctly, run the tutd command, as described previous-
ly in this section. REMEMBER also that any time you edit
this driver file, you must reassociate any terminals which
use the driver.

Page 480

CLEARBROOK SOFTWARE GROUP INC.
ABBOTSFORD, BRITISH COLUMBIA -

©1986 Clearbrook Software Group Inc.
Printed in Canada

; —a
: =
— - Kl
; -
; -
P sicoms
-

-

: =
_— =
' =
: =3
' — . =
|

==

' =
: =
: =
: -
' SEF Y
: T N A N S e T T W R SN P I S TR I
L IR RS T i TR e T S e O S ey S SRR A R I,

