i L

Tutorial & Reference Manual

i

CLEARBROOK SOFTWARE GROUP
INFORMATION MANAGEMENT SYSTEM

(CSG IMS)

Release B, January 1, 1986

By Paul Kehler and Paul Goertz

Documentation by Clarence Martens

Copyright 1985, 1986 Clearbrook Software Group Inc.

This documentation is copyrighted by Clearbrook Software
Group Inc. No part of it may be reproduced by any means ex-
cept by written consent from Clearbrook Software Group.

The information within this documentation is believed to be
accurate. Clearbrook Software Group will not be liable for
any damages, including indirect or consequential, which may
result from reliance upon the information herein.

Clearbrook Software Group Clearbrook Software Group
PO Box 8000-499 446 Harrison Street
Abbotsford, BC PO Box 8000-499, Sumas, WA
CANADA V2S 6H1 USA 98295-8000

Phone: (604)853-9118

TABLE OF CONTENTS

FOREWORD+ .+ « « .
GLOSSARY . . . « .« .+ +« « .
SPECIFICATIONS
SYSTEM REQUIREMENTS

UPDATE POLICY

FOREWORD

Congratulations on your purchase of the Clearbrook
Software Group Information Management System (CSG IMS). CSG
IMS is an extremely powerful yet easy to use database man-
ager that includes all the necessary tools to create power-
ful business software. It has both relational and network
capabilities.

This documentation is meant for two kinds of users.
For experienced programmers the tutorial section should be
read to get the "feel"” of IMS, and then the reference sec-
tion should be studied to learn the specifics of each IMS
statement.

For beginners, the Glossary is a good place to start.
The tutorial is next; this is a step by step section showing
how simple it really is to create a powerful IMS program.
It does not go through each detail of IMS, rather it is a
learning by example guide. Once through this, the reference
section should be studied to learn all the details of IMS.

But before you go any further you should fill out and
return the license agreement and then turn to appendix A for
instructions on how to install IMS.

Note that throughout the documentation, 0S9 is a
registered trademark of Microware Systems Corp. and
Motorala.

CSG IMS is a trademark of Clearbrook Software Group
Inc.

blank

GLOSSARY

A dictionary of words used in CSG IMS documentation.

assignment

To give a variable or field the value of an expression.
Assignments have the variable name or field name on the left
side, an equals symbol (= or BQ) in the middle and an ex-
pression on the right side.

branch

To change the execution order of a IMS program. Branch
is a general term to aescribe all the commands in IMS that
change the consecutive order of execution of an IMS program.

byte
A unit of storage on disk or in memory. A character is
stored in one byte.

character
A letter, digit, punctuation mark, etc. "The name" has
8 characters between the quotes.

compile
To change a text file containing MODULE(S) to a file
which can be executed by the IMS INTERPRETER,

control character

A character which cannot be displayed. On terminals,
control characters are often used to perform functions, such
as clearing the screen, or scrolling the text on the screen
up one line. Control characters can also be typed on the
keyboard to control the operation of a program. To type a
control character, hold the key labeled CTRL down while you
type a letter key.

cursor

An indicator on the screen ot a terminal which occupies
one character. It is where the next character will be
printed, and when it is, the cursor will shift right by one
character. It is often seen as an underline, or a reverse
video block, and sometimes flashes.

data file

A number of records on disk. For example, the data
file called APPLICANTS could be the name or a file that con-
tains many records, each containing information about

3

prospective employees. When the word file is used by itself
it refers to a data file.

declaration
A declaration is any IMS statement that declares that a
named variable exists and of what type it is. For example:
REAL amount
declares the variable amount to be of type REAL.

default

A default is the value that is assumed when no value is
stated. For example, the default left and right margins for
reports are at the first and eightieth columns. That means
that unless the margins are explicitly changed, reports will
produce output with these margins.

execution

The word used to describe IMS running or executing your
module. When a particular statement is said to be executed,
that means the statement has given IMS an instruction to ac-
complish and IMS is doing it.

expression

An expression 1is a value, possibly containing
functions, operators, numbers, etc., 3 is an expression with
the value of 3, 3+45 is another with value 8, LEPT$("this is
the text",4) is another with value "this".

field

An item of information in a record. For example:
NAME_OF_APPLICANT could be a field in a record of a file
called APPLICANTS.

file descriptor

This is a text file made by the user telling IMS the
various fields and keys in the file and the masks that go
with each. This file is used to create the data file.

function

A function in IMS is a statement that returns a value.
Functions can be printed, used in an expression, or assigned
to a variable. For example, MAX is a function that returns
the largest value in a series of values, and PRINT is a
statement that outputs a value:

PRINT MAX (10,20,-34)

would output 20.

index file

An index file differs from a data file in that the in-
formation for the key values of the data are stored there.
The name of the index file is similar to the name of the
data file the index is for. A data file has an extension of

4

.ide and the index file has an extension of .iin. When the
word file is used by itself it refers to a data file.

input

A general word to describe data coming into the
computer. Typing on the computer keyboard is a form of
input.

interpret
To execute a complied MODULE.

key

An expression of field values that species an order for
records in a data file. For example, the employee number
field in an hours worked file would probably be a key, mean-
ing that searches, listings, and operations on the file
could be done in the order of the employee number.

loop

A group of statements that execute for a number of
times until another statement is used to stop them. Loops
in IMS are marked by LOOP ... ENDLOOP, REPEAT ... UNTIL, and
WHILE ... ENDWHILE statements.

mask

The way the user specifies the format the information
will be entered into the field and displayed from the field.
Masks are set up in the file descriptor and can be changed
during execution of a module.

module
An IMS program, marked by the MODULE statement at the
beginning and an optional END at the end.

null TEXT

No characters. The null TEXT value would be the value
in between the quotes "", which is nothing at all. Note
that spaces are different from the null value.

output
To send data out from the computer. The computer send-
ing a message to the screen is an example of output.

paint

To make a form on the screen. Paint refers to the
process in which the user specifies titles and placement ot
fields on a screen or report form.

pathlist
The name of a file including the hierarchical directory
information. In 0S9 an example is /d0/data’/accounts.

program
A sequence of instruction to the computer. In IMS, a
program is also called a module.

record

An individual grouping of data. A record relates in-
formation about a particular person or item into one unit,
For example, in a mail list a record would be the mailing
information for a person you mail to ,ie., the name and
address ot that person.

relational

1. The ability of a data base program to link related data
files together so that the total sum of information can be
handled in a simple manner. For example, a file containing
invoices can be related to the file containing vendor
information, so that the information about the vendor and
the invoices can be handled as one unit. IMS is a rela-
tional language.

2. A symbol such as < (less than) or > (greater than) that
relate one value to another. Relationals return a true or
false indicating if the first value is truly related in that
way to the second value.

reserved word

All the words of IMS statements are known as reserved
words. This includes IF, NEXT, FIND, SCAN, etc. (they are
normally in all capital letters). See the reference manual
for a full list.

statement
A statement is just a single line in an IMS module,
comprising a single instruction,

subroutine

A module or a group of statements inside a module that
performs a task useful in a variety of instances. Typically
a GOSUB or CALL instruction is used to execute the sub-
routine.

variable
A name of a storage location., A variable holds a value
that can be change by assignment.

SPECIFICATIONS

Maximum data file SiZ€...ivevveveevrensnnees.0S Limited *
Maximum number of records per data file......0S Limited
Maximum number of fields per record......memory limited *¥*
Maximum number of bytes per record.......memory limited
Minimum number of bytes Per recOrG.......eeeeeveces...5
Maximum number of OPEN fileS...e.eseeeeuseneeees.B OF 6 **%
Maximum number Of KeysS Per £ileue.eeseeeooeeooseees.127
Maximum length of a single field.........memory limited
Maximum length of a field or variable name..........255
Maximum number of lines in a module......memory limited

NOTE:

*

* %

* k%

0S8 Limited: Limited by the disk capacity and operating
system,

Memory Limited: In 0S9 approximately 20K is available
for program modules and data.

Most 0S9 systems allow 16 open paths. Three paths are
used for standard input, output and error. Another
path is used for the error message file and two may be
used for alternative input and output paths. Each OPEN
statement opens a data file and an index file.

blank

SYSTEM REQUIREMENTS

The following are the basic system requirements for IMS.

Operating System
059/6809 LII

Ram Memory
128K or more

Mass Storage

2 double sided double density drives of 250K or
more each. Hard disk drives are recommended for

more involved applications.

CRT Terminal
-absolute cursor addressing

-nonembedded video attribute(s) (at least one),
for example: half intensity or reverse video.

~clear screen
-clear to end of line

Printer

ASCII printer with 80 or more columns which recog-

nizes the ASCII formfeed character.

blank

10

UPDATE POLICY

Clearbrook Software Group will provide free updates for
a period of one year after the purchase of the software.
After this period, updates will be available for $15US
($20US overseas).

To receive your update, you must send your original
disk (or your most recent update) to Clearbrook Software
Group. We will then send you our latest update. Please
check with us first to determine if an update is available,

The licence agreement enclosed with this manual serves
two purposes. When returned to us, it will place you on our
mailing list. We will then automatically keep you informed
of when updates are available. The signed licence is an
agreement that the licencee and Clearbrook Software Group
will abide by the terms of the licence.

11

- G INFORMATION
- MANAGEMENT
r lA \x SYSTEM

CLEARBROOK SOFTWARE GROUP
INFORMATION MANAGEMENT SYSTEM

TUTORIAL

Release B
January 1, 1986

Copyright 1985, 1986 Clearbrook Software Group Inc.

TABLE OF CONTENTS

Introduction,

Lesson 1
Lesson 2
Lesson 3
Lesson 4
4a
4b
4c
44
4e
Lesson 5
Lesson 6

Lesson 7

Getting Started o e 4 e

Creating Files, Forms and Programs

Reports . . . v e e e .
Payroll
Employee Maintenance
Job Maintenance e e e e .
Hours Maintenance
Check_data File e e s e
Putting it all together . . .
Backups and Modifying Structures
Error Trapping

Adding functions to IMS . . .

12
20
23
24
28
30
35
38
47
49
54

INTRODUCTION

This tutorial will introduce you to the various aspects
of the IMS application development environment. You will
learn how to "run" IMS programs, create data files, design a
screen input form and do reports. You will also learn how
to write and modify your own programs and to work in the in-
teractive environment, :

The tutorial section is not intended to cover all
aspects of IMS. The reference section gives you aa or-
ganized description of all statements and functions avail—
able for writing programs. The appendices have more
detailed information on the use of IMS.

Before you get started with the tutorial, you should
make sure you have installed IMS on your computer. Refer to
Appendix A for instructions to do this.

Another thing to know is how data is expected to be

entered. Text is typed in the normal manner. The key
labelled DEL is used to delete the previously typed
character,. The left and right arrow keys are used to move
the cursor. When you have entered your data and ensured

that it is correct, you will usually need to press the
RETURN or ENTER key (on some keyboards this key is labelled
with a large bent arrow) to indicate that you are satisfied
with what you have typed. This signals the computer to in-
terpret what you have told it to do.

NOTE: The files used in the tutorial are found in the IMS
directory of your diskette. Make sure this is vyour current
data directory when you do the following lessons.

Now it is time to start the tutorial, enjoy!

Directory: /DO/IMS Date: January 18, 1986

CSG IMS Executive

Editor

Generate a data file

Paint a screen form

Describe a report format

Compile module

Execute a compiled module

Interactive environment

Change working directory

Pass a command to the operating system
Quit

OOVONO NP WN =

-

Your choice:

CSG Information Management System
Version 1.0, Serial number 000000
(c) 1985, Clearbrook Software Group Inc.

LESSON 1

Getting Started

Objectives:
To learn - the main menu options
- the interactive mode
- how to maintain a file
- the file commands
OPEN
LIST STRUCTURE
LIST
PRINT
DELETE
SET PRINT

In this lesson you will learn how to use an IMS module
that maintains the data in a file and how to use the inter-
active mode to make queries about the data in the file.

From the operating system prompt, type IMS and press
the RETURN or ENTER key. When IMS is ready you get the
screen called "main menu", which is reproduced on the op-
posite page. It is a list of the various options you can
choose in IMS. These options are selected by typing in
their respective number and pressing the RETURN or ENTER
key. We will see them in operation in the various lessons
of the tutorial.

1. Editor
Selecting 1 will choose the editor option. This will
give the prompt:

File to edit:

You will also see above the prompt line a menu ot file
names. These are the text files; files that end in
.imo are IMS modules, files that end in .ide are IMS
data descriptors. .imo and .ide are known as file
extensions, and these are the recommended file exten-
sions for these kinds of files. To edit one of these
files simply type in its name, or you can type in a new
text file name, but don't forget to include the exten-—
sion as part of the name.

Directory: /DO/IMS Date: January 18, 1986

CSG IMS Executive

Editor

Generate a data file

Paint a screen form

Describe a report format

Compile module

Execute a compiled module

Interactive environment

Change working directory

Pass a command to the operating system
Quit

® o e & 2 o s s o+ e

OLWOD-NOUEsWN =

-

Your choice:

CSG Information Management System
Version 1.0, Serial number 000000
(c) 1985, Clearbrook Software Group Inc.

2. Generate a data file
This will give the prompt:

Name ot file descriptor:

At this point you can type in the name of a file from
the list above the prompt. Not all the files 1listed
are data descriptor files. We recommend that you put
an extension of .ide at the end of a file name so you
can identify files from which you can generate data
files. IMS will make one or more data files based on
the information in the file descriptor.

3. Paint a screen form
This option will give the prompt:

Data base file(s):

and wait for you to type in the names of the data base
files for which you wish to create or edit a screen
form. Above the prompt, available data base file names
will be displayed. This option will let you design
the form, and can generate an IMS module to maintain
one of the files used in this form.

4. Describe a report format
This option will prompt:

Data base file(s):

and wait for you to type in the names of the data base
files for which you wish to create or edit a report
form. Available data base file names will be displayed
above the prompt. This option will let you design the
report format and generate an IMS module to do the
report.

5. Compile module
With this option you get the prompt:

Source file to compile:

Answer the prompt with the name ot a file containing an
IMS module. Possible file names are listed above the
prompt (not all of the files listed will be IMS
modules). In IMS you type in the module using the text
editor, but you cannot execute the module until you
compile it first. Compiling means that the words and
phrases you typed into the editor are converted into
instructions that IMS can understand and execute.

MAIL LIST FOR EVERYONE

NAME: Jim Smith
ADDRESS: 2341 West Hauser Street
Anytown, Anywhere
COUNTRY: BANZAI
POSTAL CODE: V2E 2uw?
COMMENT: Buckaroo

FILE: maillist KEY: NOKEY FORM: maillist RECGRD #7

6. Execute a compiled module
This prompts:

Module to execute:

Answer with the file name of a compiled module. Before
any module can be executed it must be compiled by op-
tion 5.

7. Interactive environment
This allows you to make queries on the file information
and get instant results.

8. Change working directory
If you want to work with files in a different data
directory choose this option. A prompt will be given:

New data directory:
to let you type in the new directory name.

9. Pass a command to the operating system
Choosing this option gives the prompt:

Shell command:

Here you can type in any operating system command.
Note, on 0S9 systems you can press RETURN or ENTER to
get a new shell,

10. Quit
Choosing this option returns you to the operating
system.

Press 6 to execute an IMS module. IMS will prompt:
Module to execute:

You can now type in the name of the file to execute; in this
lesson type in maillist and press the RETURN or ENTER key.
maillist is a module that was created previously for this
lesson.

After a few moments the screen will show a form like
that on the opposite page. Go ahead, type a name and
address into the form. You have to press the ENTER of
RETRUN key after entering each line. Notice that the Postal
Code has the format of letter number letter space number
letter number; an example would be "V2T 1E6".

MAIL LIST FOR EVERYONE

NAME: Jim Smith
ADDRESS: 2341 West Hauser Street
Anytown, Anywhere
COUNTRY: BANZAI
POSTAL CODE: VZ2E 2u2
COMMENT: Buckaroo

SELECT: Insert Update Clear Delete First Last Next Previous Key Search Quit

After filling the form, press the ESC key. This will
cause a small menu to be printed on the bottom of the screen
as follows:

Insert Update Clear Delete First Last Next Previous Key Search Quit

These are 11 options that can be selected by pressing the
first letter of the word. Each is explained below:

Insert

This will add the data as it appears on the screen to
the disk file. The data on the screen form is actually one
unit, and is called a record. Inserting a record in fact
creates a new record in the file.

Update

This will update the current disk file record with the
data currently on the screen. Use Search, First, Last, Next
or Previous to find a record before editting and updating
it.

Clear

This will clear or blank out the fields on the screen.
Note, the data in the file will not change unless you Update
after the Clear. So, if the screen has:

NAME: Jim Smith
ADDRESS: 2341 West Hauser Street
Anytown, Anywhere
COUNTRY: BANZAI
POSTAL CODE: V2E 2W2
COMMENT: Buckaroo

pressing BSC C will make it appear as:

NAME:
ADDRESS:

COUNTRY :
POSTAL CODE:
COMMENT:

Delete
This will delete the record currently on the screen
from the file. 1In other words, the data will be forgotten.

First

Selecting this option will display the first record in
the file, If the file is currently in the NOKEY order, the
first record stored in the file is displayed. If the name
key is selected, the records are ordered alphabetically by
the name so the record with the alphabetically first name

5

MAIL LIST FOR EVERYONE

NAME: Jim Smith
ADDRESS: 2341 West Hauser Street
Anytown, Anywhere
COUNTRY: BANZAI
POSTAL CODE: V2E 2w2
COMMENT : Buckarao

SELECT: Insert Update Clear Delete First Last Next Previous Key Search Quit

will be displayed.

Last
This will display the last record according to the cur-
rently selected key.

Next
This will display the next record on the screen form.
The current key is used to decide which is the next record.

Previous
This will display the previous record on the screen
form.
Key
The Key option will give the prompt:
Choose one field:
* 1 - NOKEY
2 - name
Selection?
Every file is ordered in some manner. In this example, the

file can be ordered alphabetically by the name field. The
keys themselves are given names (this will be seen in lesson
2) and in this example we have a name key and a NOKEY key.
The NOKEY key has an asterisk beside it to show that cur-
rently the file is ordered by that key. The current key or-
der is used for the First, Last, Next and Previous actions
and for Searching.

NOKEY is a special key that retreives data in the sanme
order as it is stored in the file. This is similar to the
order in which the data was typed in except that deleted
records are replaced before records are added at the end of
the file. So if in an empty file the data was typed in the
order of "Harry Swmith", "John Dellert", and "James Mann"
then the first record would be "Harry Smith", the next
record would be "James Mann", and the last record would be
"John Dellert".

There may be several keys per file. The Key option is
a convenient way of changing the ordering of the file at any
time,

Search

A search will look through the entire file for an ap~
proximate match with the data typed into the key field(s).
The current key cannot be NOKEY when you do the Search. To
search, you type a value into data field(s) which correspond
to the current key, then press ESC followed by S. IMS will
search for the first record that matches the key or the next

6

CSG_IMS v1.0

(¢) Clearbrook Software, 1985

IMS:

IMS:open'maillist’

IMS:

IMS:1list structure

*maillist / maillist.ida contains 8 records, 152 bytes long.

INDEX TYPE LENGTH
name text 30
FIELD NAME TYPE OFFSET LENGTH MASK
name text 1 30
addressl text 31 30
address?2 text 61 30
country text 91 15 LLLLLLLLLLLLLLL
postal_code text 106 6 L#L #L#
comment text 112 40

IMS:

greater if no exact match is found. The screen will show
the record which was found.

For example, suppose the file contained information
about "Harry Smith", "James Dellert", and "Jim Anderson".
You could then put the cursor onto the name field and type
in "Jerry Lewis™, press the ESC key and then the S key. IMS
would then search through the file looking for the record
with the name "Jerry Lewis"; it would not find an exact
match and instead it would show the next record - "Jim
Anderson".

Quit

Pressing the ESC key and then the Q key selects this
option, which ends execution of the module and returns to
the main menu.

Go ahead and try these ESC options. A helpful hint is
that if you press the ESC key but don't wish to do an ESC
option then simply press ESC again to get out of the menu.

Once you have finished trying out the options press EBSC
and Q to quit the module. This will bring you back to the
main menu, from where you can choose option 7. This will
bring you into the interactive mode. The interactive mode
is convenient because it allows you to type IMS file com-
mands and get an immediate response. The first of the file
commands we will look at is OPEN,

Before any work can be done with a file, it must first
be OPENed. Type in the following statement:

OPEN ™"maillist™

Be sure to press RETURN or ENTER at the end of the line.
This will open the IMS data file called maillist in the disk
directory. Now the IMS commands can work on this file.
Alternatively, you could type:

OPEN "maillist"” AS ml

which would open the same file as before, but this time the
IMS commands use "ml" as the name of this file. This can be
a handy way of abbreviating file names to save typing.

In order to see what kind ot information our file holds
type: .

LIST STRUCTURE
This will give you a list of the keys and fields which are
contained in the file. To use information from a file you

must use the names of the fields to indicate which informa-

7

IMS:list
Mary Jones

USA
Paul Davis

USA
Richard McBride

USA
Wimpy

ANY PLACE
Freeloader Fred

USA
The Sponger

CANADA
Jim Smith

BANZAI
Dave Wilson

AMERICA
Ims:
IMS:list all for country<>"USA"
Wimpy

ANY PLACE
The Sponger

CANADA
Jim Smith

BANZAI
Dave Wilson

AMERICA

IMS:list all for country="USA"
Mary Jones

USA
Paul Davis

USA
Richard McBride

USA
Freeloader Fred

USA

Ims:

IMS:1list all for country="USA"
Mary Jones

USA
Paul Davis

USA
Richard McBride

USA

Ims:

123 Hidden Rd.
Student

34 University Drive
Student

666 Glitter Ave.
Student

435 Back Alley
a moocher

121 Easy Street
a moocher

208-3110 Dreary Lane

ROA OAO0 a moocher

2341 West Hauser Street

V2E 2u2 Buckaroo

123 Harrison Street
Student

435 Back Alley
a moocher
208-3110 Dreary Lane

ACA OAO a moocher

2341 West Hauser Street

V2E 2W2 Buckaroo

123 Harrison Street
Student

123 Hidden Rd.
Student

34 University Drive
Student

666 Glitter Ave.
Student

121 Easy Street
a moocher

and comment="Student"

123 Hidden Rd.
Student

34 University Drive
Student

566 Glitter Ave.
Student

Cloven Hoof, AL
Seattle, WA
Miami, FL
Skidroad

New York, NY
Calgary, AL
Anytown, Anywhere

Sumas, WA

Skidroad
Calgary, AL
Anytown, Anywhere

Sumas, WA

Cloven Hoof, AL
Seattle, WA
Miami, FL

New York, NY

Cloven Hoof, AL
Seattle, WA

Miami, FL

tion is required.

LIST is an IMS file command. It prints out all the
records that meet the stated range specification. A range
specification is a series of conditions that tell IMS what
records the file command is to work with. It can be written
in many ways, in the simplest form you can type:

LIST

which will print out all the records. Here the range
specification is implied. With the LIST command IMS uses
the default specification of ALL the records, when the range
specification is not present.

LIST ALL

is another way of doing a list command, here the range
specification is ALL the records. This file command will do
exactly what the previous one did.

Another way of doing a LIST statement is in the form:

LIST ALL FOR condition
condition specifies a test on a field value(s), letting the
file command LIST print out the record only if the test
passes (ie., the condition is true). For example:

LIST ALL FOR country <> "Usa"
will print out all the records where the country field is
not equal to USA. The symbol <> means "not equal to" and
could instead be written NE.

LIST ALL FOR country = "USA"
This will do the opposite; it will print out all the records
with the country field equal to "USA". The symbol = means
equal to, and could be written as BQ instead.

LIST ALL FOR comment="Student" AND country="USA"
This is a double condition; it is saying that if the comment
field is "Student" AND the country field is "USA" then print
out the record. The AND part means that both conditions
must be true for the record to be printed out.

LIST ALL FOR comment="Student" AND country=
"USA" PRINT name; " is a student"

Note that this is typed in as one line. In fact, all IMS

8

IMS:1list all for comment="Student" and country="USA" print name;" is a student"
Mary Jones is a student

Paul Davis is a student

Richard McBride is a student

Ims:

IMS:scan all for country="AMERICA" let country="USA" print name

Dave Wilson

ms:
IMS:list
Mary Jones

USA
Paul Davis

USA
Richard McBride

USA
Wimpy

ANY PLACE
Freeloader fFred

USA
The Sponger

CANADA
Jim Smith

BANZAI
Dave Wilson

USA

Ims:

123 Hidden Rd.
Student

34 University Drive
Student

666 Glitter Ave.
Student

435 Back Alley
a moocher

121 Easy Street
a moocher

208-3110 Dreary Lane

AOA OAOQ a moocher

2341 West Hauser Street

V2E 2W2 Buckaroo

123 Harrison Street
Student

Cloven Hoof, AL
Seattle, WA
Miami, FL
Skidroad

New York, NY
Calgary, AL
Anytown, Anywhere

Sumas, WA

statements are entered as one line. This has the same range
specification as the previous example, but this time an ac-
tion has been added. The action is:

PRINT name; " is a student"”

which will print out the name of the person(s) with a com-
ment tield of "Student" and country of "USA" followed by "
is a student". Note that this LIST will not print out all
the fields of the record; since we are specifying the name
field to be printed, the the rest of the fields will not be
printed. The ";" character is special in a PRINT statement;
it says not to print a new line before printing the next
data.

An example would be:

Mary Jones is a student
Paul Davis is a student
Richard McBride is a student

In summary, the effect of LIST is to print out records
from the file. It can be followed by a range specification
like:

ALL
or
FOR comment="Student"

and then an action like:

PRINT name

Another file command is SCAN. Like most file commands,
SCAN has a range specification and an action like LIST, but
it can also have a LET action statement. The LET statement
is a way of assigning new values to fields. For example:

SCAN ALL FOR country="AMERICA" LET country="USA"
PRINT name

This statement will go through all the records and check to
see if the country field is "AMERICA", If it is, then the
country field is changed to "USA" and the name of the person
is printed out.

Another example would be:
SCAN ALL FOR country= "CANADA" AND postal_code=

"V2T-1E6" LET comment="My neighbour™ PRINT
name

IMS:delete all for comment="a moocher" print name;" is deleted"

Wimpy is deleted
Freeloader fred is deleted
The Sponger is deleted
Ims:

IMS:list
Mary Jones

USA
Paul Davis

USA
Richard McBride

USA
Jim Smith

BANZAI
Dave Wilson

USA

Ims:

123 Hidden Rd.

Student

34 University Drive
Student

666 Glitter Ave,
Student

2341 West Hauser Street
V2E 2W2 Buckaroo
123 Harrison Street
Student

Cloven Hoof, AL
Seattle, WA
Miami, FL
Anytown, Anywhere

Sumas, WA

This mouthful is still a valid IMS statement. What it is
saying here is that if the country field is "CANADA", and
the postal code is "V2T-1E6" then the comment field becomes
"My neighbour", and the name of the person is PRINTed out.

Another file command is DELETE. This file command will
go through all the records, deleting those which meet the
range specifications. So, .

DELETE ALL PRINT name

is a file command statement that will delete all the records
from the file, and print out the name field of each.
Obviously, this is a command you would not normally want to
give to IMS.

DELETE ALL FOR comment="a moocher™ PRINT NAME;
" is deleted"

This file command will go through the file and delete all
the records that have a comment field of "a moocher", print
each of their names with " is deleted" following their
names,

Wimpy is deleted
Freeloader Fred is deleted
The Sponger is deleted

is an example of what might be printed out to the screen.

If you want the output from the screen to go to another
device, like a printer or file, the following commands are
used:

SET PRINT TO "pathlist"
SET PRINT ON

where pathlist is the name of a file or device. This sends
the PRINT output to the pathlist device, but the SET PRINT
ON statement must be used to activate this. Output will
still go to the screen.

10

If your printer was device /p. Then you would type the
following two lines:

SET PRINT TO "/p"
SET PRINT ON

to send what normally displays on the screen to the printer.
Enter some commands while the output is being sent to the
printer. This is an easy way to keep a record of what you
are doing.

If you want to turn the output to the printer or file
off, type:

SET PRINT OFF

Output will no longer go to the printer but the path to the
printer or file will stay open, to close it type:

SET PRINT TO ""
You now know some of the things you can do in IMS in-
teractive mode. Don't be afraid to try different range
specifications.

Once you have finished experimenting, type END or press
the ESC key to bring you back to the main menu.

11

NOTE This is the file creator for lesson two
FILE lesson2

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

TEXT
TEXT
TEXT
TEXT
TEXT
DATE
DATE
REAL

name OF 30

street OF 40

city province OF 40 ALIAS cp
country OF 20

postal_code OF 6 MASK "LHL #Li"
startdate

enddate

giftvalue MASK "H#H#HH #E"

INTEGER satisfaction
INTEGER ndays

KEY TEXT name OF 30 = CAP${name)
KEY REAL giftval = giftvalue
KEY INTEGER sat = satisfaction

LESSON 2

Creating Files, Forms, and
Programs

Objectives:
- using the text editor
- creating files
~ creating forms

From the IMS main menu choose option 1, the text
editor. Answer the prompt with lesson2.imo, and press the
RETURN or ENTER key.

Type in the statements on the opposite page. What you
are typing is called a file descriptor; these statements
create a file with the fields of a mailing list similar to,
but better than, what we saw in LESSON 1. It is important
to know that when writing anything in IMS, no distinction is
made between upper and lower case letters. Blank lines and
extra spaces between words are also ignored so you can type
them in if you wish.

You are presently using the text editor, a general pur-
pose and easy to use program for typing and editing any sort
of text. For the full story on the text editor, check the
appendix. The editor has all the usual block editing
capabilities, as well as search and replace abilities,
Without repeating the manual, suffice it to say the the cur-
sor keys as well as the DEL key have their usual meaning,
HOME and "E for END do just that, and ESC will move you be-
tween the text screen and the command menu. Help is always
available by pressing ESC and then ?. The menus on the
status line will help you, but if you get into trouble check
the manual or ask for a HELP screen. One more point, “A,
(control A), for Abort, will stop an action from occurring
(such as a FIND operation).

An explanation of the statements follows below:
NOTE This is the file creator for lesson two

Any statement preceded by NOTE is a comment to the per-
son reading the statement. A NOTE statement does not do
anything to IMS, it is simply a way of telling the reader
what the following statements are supposed to do.
FILE lesson2

12

NOTE This is the file creator for lesson two
FILE lesson2

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

TEXT
TEXT
TEXT
TEXT
TEXT
DATE
DATE
REAL

name OF 30

street OF 40

city province OF 40 ALIAS cp
country OF 20

postal code OF 6 MASK "LHL #L#"
startdate

enddate

giftvalue MASK “HE##4. 440

INTEGER satisfaction
INTEGER ndays

KEY TEXT name OF 30 = CAP$(name)
KEY REAL giftval = giftvalue
KEY INTEGER sat = satisfaction

This is a FILE statement, and it should be near the
top. It tells IMS that the data files we will be creating
will be called lesson2.ida and lesson2.iin in the disk
directory. File names must start with a letter and then may
have digits and underline characters ("_"). The maximum
number of characters in a file name is 29. Because 4 extra
characters are added to a file name, the name following FILE
can be no longer than 25 characters. So "employee_data",
"customer_accounts", and "magazines_cross_ref" are all valid
file names. "3rd_version AR" is not valid (starts with a
number), and "totals$" is also not valid (it has the dollar
sign).

FIELD TEXT name OF 30

This statement says that there is a field in the file
called "name". It is a TEXT field, meaning that this field
holds words, characters, or names ,ie. text, but it is not a
number field. You could not add or subtract with this
field. This makes sense since it is the name of a person,
and you wouldn't want to add or subtract a name. It is also
"OF 30", meaning that this field has a maximum length of 30
characters. Field names are restricted in a way similar to
file names; they must start with a letter and then must con-
tain letters, digits, or the underline character. The big
difference is that they don't have a size limit; they can be
any number of characters (within reason!).

FIELD TEXT street OF 40

This is another TEXT field. This one is called
"street", has a maximum length of 40 characters, and is for
the street address of the person.

FIELD TEXT city_province OF 40 ALIAS cp

This is another TEXT field, called "city_province" and
it has a maximum length of 40 characters as well. It is for
the city and province (or state) address of a person. The
"ALIAS cp" part means that this field has two names,
"city province" and "cp". This comes in handy because the
full name spells out the purpose of the field, and the alias
becomes the abbreviation for the field.

FIELD TEXT country OF 20
This is a TEXT field, called "country", with a maximum
length of 20 characters to hold the name of the country.

FIELD TEXT postal_code OF 6 MASK "LiI #L#"

This TEXT field has a maximum length of 6 characters
and is for the postal code, of the person. This field also
has a "mask" which specifies how this field must be entered
and displayed. This mask specifies that 6 characters are
needed, a letter (converted to upper case by L), then a num-
ber (described by a "#" symbol, then a capital letter, then

13

NOTE This is the file creator for lesson twa
FILE lesson2

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

TEXT name OF 30

TEXT street OF 40

TEXT city_province OF 40 ALIAS cp
TEXT country OF 20

TEXT postal_code OF 6 MASK "LAL #Lg"
DATE startdate

DATE enddate

REAL giftvalue MASK M#####. 44"
INTEGER satisfaction

INTEGER ndays

KEY TEXT name OF 30 = CAP$(name)
KEY REAL giftval = giftvalue
KEY INTEGER sat = satisfaction

a space will be displayed in the field, then a number,
letter, number sequence. Examples of this Canadian style
postal code are "V3R 3E4" and "W7B 5F2". See the full
details about masks under "MASK" in the reference section.

FIELD DATE startdate

This is a DATE field, meaning that the contents of the
field can only be thought of as a date. This field is to
contain the date the person first started sending you gifts
or cards for Christmas. Dates are entered according to the
default date format, which is month day year. The month can
be the month name, or a three character abbreviation, or the
month number. The year can be all four digits, like "1985",
or just the last two, "85". If you want the date entered in
a different format, use the "SET DATE TO" statement as noted
in the reference manual under SET.

FIELD DATE enddate

This is another DATE field, meaning the contents of the
field can only be thought of as a date. This field is to
contain the last date on which you received a gift or cards
from this person.

FIELD REAL giftvalue MASK “#3#%#.#4"

This is a REAL field. A REAL is a number that can have
decimal places, REALs are numbers like 2.345, or -3456.1,
or even 2.34E+10 (which is scientific notation for
2.34x10+1°, or 23400000000). In this case the field, called
giftvalue, is to store a dollar and cents amount of the last
gift sent to you by this person. A mask is also specified,
showing that this field will have 2 decimal places and up to
5 digits in front of the decimal point.

FIELD INTEGER satisfaction

This is an INTEGER field. An integer is also a number
but it has no decimal in it. 234 and -634 are integers, but
312. and 342.45 are REALs and not integers. This field is
to hold a number between 0 and 100 indicating the level of
satisfaction you got out of the last gift from this person.

FIELD INTEGER ndays

This is another INTEGER field. 1Its purpose is to tell
the number of days before Christmas you should mail your
gift to this person.

KEY TEXT name OF 30 = CAPS$(name)

This is a key, not a field. Keys are how the files can
be ordered when you process them. This statement is to set
up a TEXT key called name with a maximum length of 30
characters. This key is to be on the name field after it
has been converted to capital letters (CAPS). In other
words, this key allows us to search, print out, and work

14

NOTE This is the file creator for lesson two
FILE lesson2

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

TEXT
TEXT
TEXT
TEXT
TEXT
DATE
DATE
REAL

name OF 30

street OF 40

city_province OF 40 ALIAS cp
country OF 20

postal _code OF 6 MASK "L#L #L#"
startdate

enddate

giftvalue MASK MHE#EH ##T

INTEGER satisfaction
INTEGER ndays

KEY TEXT name OF 30 = CAP$(name)
KEY REAL giftval = giftvalue
KEY INTEGER sat = satisfaction

with the file in the order of the name field. CAPS means
that we will order the file according to the upper case ver-
sion of the field. This is necessary because if it were not
there the ordering would be by ASCII (see appendix for the
ascii ordering table), which makes lower case letters come
after upper case letters. For example, "smith" would come
after "Yonnie".

KEY REAL giftval = giftvalue

This is another key, called giftval, of type REAL. It
is of type REAL because the key is in order of the field
giftvalue that we saw before, which is also a REAL field.
Keys should always be of the same type as the field they are
based on.

KEY INTEGER sat = satisfaction

This is the last key, called "sat". This key is of
type INTEGER, because it is based on the field
"satisfaction"., This key will allow searches, print outs,
etc. to be done in the order of how much satisfaction came
from the last present you got from each person.

You should notice the order that the fields and keys
are in. A NOTE statement comes first, telling the purpose
of the file you are creating. NOTEs can actually come
anywhere in the module to explain what a field does or what
a key does. The FILE statement should come next, then the
fields, and finally the keys. Keys can only be based on
fields that exist in the same file you are creating. Also,
remember to keep the number of keys low so that file perfor-
mance remains acceptable. In this example we have three
different keys, actually one or two keys are best.

Also notice the order of the words in the IMS
statement. The first word on a line is always NOTE, FILE,
HEADER, FIELD or KEY. The words HEADER, FIELD or KEY ar
followed by the data type TEXT, REAL, INTEGER, LONG, or
DATE. The name of the field or key comes next, and if it is
a TEXT field the OF length follows. If it is a KEY the =
field expression comes next. For a HEADER or FIELD, a MASK
may be specified to control the format of the data. Last of
all is an optional ALIAS field name part.

Save the text you have created by pressing EBSC and then
S. Answer the prompt with a carriage return; note that the
filename you stated when you started the text editor is used
when you save the text. Having saved the text, type ESC and
then Q to quit the editor and go back to the main menu.

15

ULTRA MAIL LIST AND GIFT REMINDER

NAME :

STREET:

CITY AND PROVINCE:

COUNTRY:

POSTAL CODE:

INITIAL GIFT DATE:

LAST GIFT DATE:

VALUE OF PRESENT:

LEVEL OF SATISFACTION (1-100):
DAYS BEFORE CHRISTMAS:

Row: 16 Column: 39

From the main menu choose number 2, to generate a data
file from this file descriptor. This will prompt:

Name of file descriptor:

Answer the prompt with lesson2.ide, the same name used
before when we entered the text editor. If any errors are
reported during the generation of the data file, check your
file for spelling mistakes.

Now that we have the data file we can create a form to
maintain the file. Basically the procedure to create a form
is to name the file you are making a form for and then
"painting" the screen with the prompts and titles you think
should go on the form. You also place the fields on the
screen in the location you want them displayed.

When you are finished you tell IMS to generate a module
to edit the file using this form. This module is complete
enough so that you can compile and execute it from the main
menu to add, delete, edit, and find records from the file.
Or you can use the text editor to add capabilities to the
module. In this lesson we are going to create the form and
then examine the module IMS produces.

From the main menu select 3 to paint the form on the
opposite page. Respond with lesson2 when asked for the data
file(s) to use. Simply move the cursor around the screen
and produce a copy of what you see on the opposite page.
When you are finished, move your cursor to a couple of
spaces past NAME:, Press *F for field editing and then
press A for adding a field. This will show a screen like:

FILE lesson2 FIELD TEXT name OF LENGTH 30

FILE lesson2 FIELD TEXT street OF LENGTH 40

FILE lesson2 FIELD TEXT city province OF LENGTH 40 ALIAS cp
FILE lesson2 FIELD TEXT country OF LENGTH 20

FILE lesson2 FIELD TEXT postal code OF LENGTH 6

FILE lesson2 FIELD DATE startdate

FILE lesson2 FIELD DATE enddate

FILE lesson2 FIELD REAL giftvalue

FILE lesson2 FIELD INTEGER satisfaction

FILE lesson2 FIELD INTEGER ndays

A "F A combination will show a screen with the fields

of the files chosen when we started the forms editor. We
chose file lesson? when we started the forms editor, and now
the screen shows the fields from that file. Now, by press-

ing the cursor keys we can move the cursor over different
fields. Move the cursor onto the line with the name field
and press the RETURN or ENTER key. The screen will change
and show our form again, with a series of "#" characters

16

ULTRA MAIL LIST

NAME :

STREET:

CITY AND PROVINCE:

COUNTRY:

POSTAL CODE:

INITIAL GIFT DATE:

LAST GIFT DATE:

VALUE OF PRESENT:

LEVEL OF SATISFACTION (1-100):
DAYS BEFORE CHRISTMAS:

Row:

AND GIFT REMINDER

FFIEH I BN BN NMIN N3¢
§§§§**%*}*#***%#%*%*%%&&*ﬁ%#*%&**#*}*#ﬁ}
%****§§§%**%%#%*#***#%**%*&}%**%%*%*&*#*
2222332333228 2 S

L#L HLR

b2 222222222 3-F-2-3-37F- 3

B L2 L2223 25371

phgee 44
AHhRie
iiada i

1 Column: 1

indicating the mask of the field. (The complete story on
MASKs is in the reference manual under MASK.)

What we have done is tell IMS that we want to ENTER and
DISPLAY the name field from the file lesson2 at this screen
location. Move the cursor down one line to right after
STREET ADDRESS: on the form and press “F A. This brings us
back to our display of fields again, but now we see that the
name field line is hi-lited. This shows us that the name
field has already been chosen and can't be chosen again, un-
less it is "unchosen"., Move the cursor to the street field
line and press RETURN or ENTER. We are now back in the form
and we can see the default mask for the street field. Con-
tinue in this way until all of the fields have been chosen.
You should get a screen looking like the one on the opposite
page.

As you are typing you may want to do some editing of
the form. The DEL key will delete a character to the left
and move the right part of the line over one character. °D
(control D) is similar but it deletes the character under
the cursor, “C will insert a space into the present line,
“I will insert a blank line onto the screen, losing the
bottom 1line. “X key sequence will delete the present line
from the screen and bring in a new blank line at the bottom
of the screen. Note that deleting a line is never possible
when the line to be deleted has a field on it; the field
must first be deleted (by “F D). The HOME and “E key
sequences move to start and end of the screen, respectively.
“A is a special key sequence that aborts any editing
operation.

If you ever want to "unchoose" a field, move the cursor
onto the mask of the field, and press “F D. This will take
the mask off the screen, and take the field off the chosen
list, Then the field can be chosen again for some other
place on the screen.

When you are finished "painting"™ the form, press ESC S,
for SAVE. This will give the question:

SAVE; filename:

Here IMS asks for the file name to save the form. Type in
lesson2 and press the RETURN or ENTER key.

17

ULTRA MAIL LIST AND GIFT REMINDER

NAME: F3E 33636263 FEE ST IE 3 26 2O F MM
STREET: IR M ORI R K
CITY AND pRUVINCE: 3636 3¢ 38 38 36 34 36 36 3E 3% 3¢ 31 3 38 36 36 36 3¢ 36 38 3¢ 3¢ 36 36 36 36 36 36 3¢ 3¢ 56 36 36 38 36 34 34 36 3¢
COUNTRY: t2 2222222223232 223321
POSTAL CODE: LU #L#
INITIAL GIFT DATE: 3636 36 3¢ 3¢ 3¢ 34 3 3 3362 A3
LAST GIFT DATE: 2223222 233.2.23.2:23 3]
VALUE OF PRESENT: #E###E.##
LEVEL OF SATISFACTION (1-100): ###4i
DAYS BEFORE CHRISTMAS: FE#H#H

GENERATE; name of output file:

When the file has been saved, press ESC G to generate
an IMS program to help you maintain the information in the
file. You will be prompted:

GENERATE; name of ouput file:
Type lesson2. Next it will prompt:

Form to use:
Type in the same name as you gave when you SAVEd the form
(lesson2). A program will now be generated to help you
manage your data.

Other important ESC and "P sequences are:

ESC Q for quit will give the question:

QUIT; Are you sure? (Y/N):
Pressing Y will quit the form and forget all changes to the
form since you last SAVEd it. Pressing N will go back to
the form.,
ESC L for load, will give the prompt:

LOAD; filename:
Typing in a file name will cause IMS to look for a forms
file with that file name, and load that information into the
form destroying what was previously in the form.
ESC P for pass, will give the prompt:

PASS: command to operating system:

You can now type in any operating system command, for ex-
ample dir.

ESC C for clear, clears the form on screen and all fields
chosen before become "unchosen".

ESC O for output hardcopy, puts on the device of your choice
a report of your form.

ESC ? or ESC H will give a help screen telling the important
facts about the forms editor.

18

ULTRA MAIL LIST AND GIFT REMINDER

NAME :

STREET:

CITY AND PROVINCE:

COUNTRY:

POSTAL CODE:

INITIAL GIFT DATE:

LAST GIFT DATE:

VALUE OF PRESENT:

LEVEL OF SATISFACTION (1-100):
DAYS BEFORE CHRISTMAS:

FILE: lesson2 KEY: NOKEY FORM: lesson2 RECORD #0

*F M for mask, lets you change the mask of a field that is
already displayed on screen.

“F I for info, tells you which field the cursor is on.

“F D for delete, deletes the field from the screen allowing
you to select it at a different location on the screen.

After saving the form, and generating a module quit the
forms editor with ESC Q. From the main menu, choose option
5 to compile the IMS module generated by the forms editor,
and answer the prompt with lesson2., After it has finished,
choose option 6 to execute the module, and answer the prompt
with module name lesson2. Notice that it acts very much
like what we saw in lesson 1. You can add, delete, edit,
and find records in the same manner. In fact, lesson 1l is a
module that was generated by exactly the same process as was
lesson 2.

Type data into this form. Practice inserting, delet-
ing, modifying, searching, and adding records. Try changing
the current key. When you have entered about a dozen
records, quit to the main menu. Enter the interactive en-
vironment {(option 7 from the main menu) and experiment as
you did in lesson 1. For example:

LIST KEY giftval PRINT name

will PRINT out the names of the people in your list in order
of the value of the gift they gave to you.

LIST XEY sat PRINT name

will do a similar thing but the names will be printed out in
the order of your satisfaction with the gift they gave.

The point is that since our data file has more than one
key we can specify what key we want by putting in the KEY
key name clause. One kind of key is special and is present
in every file, and it is called NOKEY.

LIST NOKEY PRINT name
This specification would PRINT out the names of the people
on your mailing list in an order similar to the order you

typed them in.

When you are finished, go back to the main menu by
pressing the ESC key or typing END.

19

I coc - ;
REPORT UPDATE FOR ULTRA MAIL LIST AND GIFT REMINDER

PRIMARY SUBTOTALS;
TOTALS;

Total Number of People: Total Gift value:
B -\O OF REPORT,

Line: 1 Row: 1 Column: 1

LESSON 3

REPORTS

Objectives:
- to learn how to use the reports form editor
- to learn how to generate and execute a
report module

In this lesson, we will use the reports form editor to
generate a program which will perform a report on a data
base. We will build on the example given in lesson 2. From
the main menu, enter selection 4, to describe a report form.
When the prompt

Data base file(s):

appears, type lesson2 and press the RETURN or ENTER key.
This will bring up the reports form editor, presenting you
with a blank report form. At this point you may start
"painting" the report form presented on the opposite page.

Using the report writer is very similar to using the
forms editor. Cursor movement, and line and character in-
sertion and deletion are identical to the equivalent func-
tions in the forms editor; so are functions which are in-
itiated by pressing the EBSC Kkey. The "B key initiates a
menu from which you may change the left or bottom borders of
the report by pressing L or B, respectively. The “P key in-
itiates a function menu, the contents of which depend on
what line your cursor is on in the report form. The most
common state of the "F menu will be identical in function
and appearance to the “F menu of the forms editor - field
editing.

A report form consists of a number of well defined
sections. Each section has a title, usually displayed in
inverse or half intensity video. After any section title,
the user may insert new text lines by simply typing “I, as
in the forms editor. Once a text line has been inserted,
text and fields may be placed anywhere on that line, in the
location in which they are to be displayed.

In order to place a field on the report form, move the
cursor to the place (in a previously inserted text line) you
wish the field to be. At this point, type “F. 1Instead of
the Add option available in the forms editor, you will need

20

I 0
REPORT UPDATE FOR ULTRA MAIL LIST AND GIFT REMINDER

PAGE. #
I FRIMARY FILE:
3636 36 3 38 36 36 38 38 7 36 3¢ 34 38 34 36 36 3 3 3 3 36 36 36 36 36 34 36 26 3¢ [11TIR; 22Tt

I3 3 3 0303030 3B B 008 38
3 3EEOOEEEGUHOHEHHHEE R UU0HGHEB0000N
e L L L L Ll L Y I Y

B = mary susToTAL S ; I
i —————————]

Total Number of Pecple: #### Total Gift value: #####.¢#4
END OF REPORT.

Line: 1 Row: 1 Column: 1

to choose from one of Print, Sum, Number, or Today. Note
also that not all these field displaying options are avail-
able all the times.

The Print option is essentially identical to the Add
option of the forms editor; when a program is run which was
generated by the report writer, the data currently in that
field will be printed out. The Sum option is nearly the
same as Print, except that instead of printing out the cur-
rent value of that field, the generated program will print
out the sum of the data field as that portion of code is
iterated (repeated). This may in fact take the form of a
total, subtotal, or a running sum. Finally, the Number and
Today options operate similarly to the Print option, except
that instead of printing a field, they print the current
page number or current date, respectively.

Of course, the Mask, Delete, and Info options available
with the field editing command are the same as described in
the forms editor.

So, proceed then with painting the form given opposite.
Remember that to enter the fields and text in the HEADER,
FOOTER, PRIMARY FILE, and TOTALS sections, you must have in-
serted blank lines after each respective title with "I,

The mask in the FOOTER section is the page number,
selected by typing “F N. 1In the PRIMARY FILE section select
the appropriate fields with the *F P function. Finally, in
the TOTALS section, select both fields shown in that section
with the *“F S function; note that the #### mask is really
the lesson2.name field, but must be remasked after it 1is
selected. You must also set the bottom margin to a value of
62, by pressing "B B at any point and typing the number 62.

When you are finished painting the report form, type
ESC S for save. This will give the prompt:

SAVE; file name:
Type lesson2 in response, and press RETURN. After the
report form has been saved, type ESC G to generate a report
module. The computer will ask:

GENERATE; name of output file:

Answer lesson2rep; this file will contain the IMS source
file for the report module. When the computer prompts:

Index the primary data base (Y*/N) ?
type N in response.

21

N < ~0c ; N
REPORT UPDATE FOR ULTRA MAIL LIST AND GIFT REMINDER

""""""" oacE fff

R R 1mARY FILE;

33333 AR MMM R R R AR R FEERE BH ITITTT]
33835333 3300 R MBI TR BRI HH R RO 2

3363 34343 3 533363 03836 5 3033 M HOEIO R MMM

#EREHUGHEOHOaaE | 4 8

PRIMARY SUBTOTALS;
TOTALS;

Total Number of People: #### Total Gift value: ##### H#H

I -N\O OF REPORT,

Line: 1 Rows 1 Column: 1

When you have finished, quit the reports form editor by
typing ESC Q. Once you are back in the main menu, compile
the source for the report module (selection 5), and execute
it (selection 6). When the report module is executed, it
will first ask you:

Output device to use:

Here you must enter the device you want the report printed
on. Normally, you would type /pl or /p in response. After
you have answered this question, you will be asked:

Single sheets or Continuous paper (S/C):
Enter either 8§ or C for the style of paper feed you want.

After these questions, the report will start printing.
At any time, you may type BSC in order to interupt printing.
When you do so, you will be asked (at your terminal):

Report interupted; Abort or Continue (A/C)?

at which time you may press A to terminate the report or C
to resume, Also, if an error occurs any time during
execution, the message for that error will be printed, and
you will be asked:

Abort, Ignore, or Retry (A/I/R)?

Abort will terminate the report, Ignore will simply resume
execution, and Retry will attempt to re-execute the state-
ment that caused the error to occur.

Since the report module was in fact generated in the
IMS applications language, you can alter the source to any
special requirements you may have for your particular
report. The generator produces fairly modular code, so
going through it will be easy; it is not recommended that
you do so, however, until you more fully understand the IMS
applications language. In lesson 4D, you will see a more
complex application for the reports form editor, where there
are two data bases.

22

LESSON 4

PAYROLL

Objectives:
- to create a payroll program

In this section we will create a payroll program. This
payroll program is only an example and may not be applicable
in a real setting, rather it is to teach the more involved
aspects of IMS.

The steps involved in the payroll cycle are:

1. Data will be entered into the employee information file
and into the job_data file.

2. Then hours are entered into the hours worked file.

3. After this a posting module reads through the hours
worked file. It uses the pay rate and deduction rate infor-
mation in the employee_data file to calculate the gross
wages and deductions. It then updates the employee record
and job record totals, and generates a series of records in
the check_data file for wages to be paid to the employees.

This payroll programs will maintain several data files:

1. Employee data.

2. Job data.

3. Hours worked data.
4, Payroll checks.

One last module serves as a menu; it prints out the
list of operations the payroll does, and then gets the
response and executes the module to do that operation.

Writing this payroll program in a standard language

would be a formidable challenge; we will now see how IMS
makes it much easier.

23

FILE employee data

HEADER INTEGER total employees ALIAS tot emp
HEADER REAL total_pay MASK "#####k#ss, #n
HEADER REAL total deductions(4) MASK "#####4###4 44" ALIAS tot_ded

FIELD TEXT name OF 25

FIELD TEXT address? OF 30

FIELD TEXT address? OF 30

FIELD TEXT address3 OF 30

FIELD INTEGER employee_no ALIAS emp na

FIELD TEXT phone_no OF 7 MASK M###-F#sm

FIELD DATE birthdate

FIELD REAL deduction_rate(4) MASK "##.##" ALIAS ded_rate
FIELD REAL gross_ytd MASK "HE###H . HH#"

FIELD REAL deduction ytd(4) MASK "#E#### . ##" ALIAS ded ytd
FIELD REAL net_ytd MASK "H#####H . #4"

FIELD TEXT salaried OF 1 MASK "L"

FIELD REAL salary MASK "H######. 44"

FIELD REAL regular MASK "##. ##"

FIELD REAL overtime MASK "§## #4"

KEY TEXT name OF 30 = CAP$(name)
KEY INTEGER emp no = employee_no

LESSON 4A

PAYROLL - Employee Maintenance

Objectives:
- to create an employee maintenance module
- to learn about HEADER records
- to learn about arrays

This section will create the module to maintain the in-
formation relating to the employees on the payroll. Enter
the text editor and answer the prompt with empdata.ide (this
is a descriptor file). Type in the file structure on the
opposite page; an explanation of the fields follows below:

FILE employee_data
The data will be stored on disk in the file called
employee_data.

HEADER INTEGER total_employees ALIAS tot_emp

This is a header field, meaning that the file has this
field only once (not one for every record). Header fields
are useful for global information; ie., information about
the file that pertains to all of the records. This header
field contains the total number of employees on the payroll.

HEADER REAL total_pay MASK "###3##8323 33"

This header field contains the total amount of wages
paid to all the employees. The mask specifies a monetary
style to be shown on the form, with 2 decimal places and 10
places in front of the decimal place. See the reference
section under MASK for more details about masks.

HEADER REAL total_deductions(4) MASK "#####38#383. #1" ALIAS
tot_ded

This is an array of four header fields. An array
simply means that there is more than one item included in
the field name. In this case there are 4 total deductions
fields, tot_ded(l), tot_ded(2), tot_ded(3), and tot_ded(4).
Each of these fields contains the total amount of each
deduction taken from all of the employees. The mask
specifies a large monetary amount.

FIELD TEXT name OF 25
The employee's name.

24

FILE employee data

HEADER INTEGER total_employees ALIAS tot emp
HEADER REAL total_pay MASK M###4#4#EEE KD
HEADER REAL total deductions(4) MASK "HER#HKEH#E.##™ ALIAS tot_ded

FIELD TEXT name OF 25

FIELD TEXT address1 OF 30

FIELD TEXT address2 OF 30

FIELD TEXT address3 OF 30

FIELD INTEGER employee no ALIAS emp no

FIELD TEXT phone_no OF 7 MASK "H##-FH##m

FIELD DATE birthdate

FIELD REAL deduction rate(4) MASK "## ##" ALIAS ded rate
FIELD REAL gross ytd MASK "##E### . 44"

FIELD REAL deduction ytd(4) MASK "F##k## . ##" ALIAS ded_ytd
FIELD REAL net_ytd MASK MR##### . ##™

FIELD TEXT salaried OF 1 MASK "_"

FIELD REAL salary MASK M####4H 4"

FIELD REAL regular MASK "##.##n

FIELD REAL overtime MASK M## ##n

KEY TEXT name OF 30 = CAP${name)
KEY INTEGER emp_no = employee no

FIELD TEXT addressl OF 30
FIELD TEXT address2 OF 30
FIELD TEXT address3 OF 30
The employee's address as expressed on three lines.

For example:

Jim Bodwin

23221 West Hauser St.

Anytown, Anywhere.

Anycountry

FIELD INTEGER employee_no ALIAS emp_no
The employee's number.

FIELD TEXT phone_no OF 7 MASK "###-#$##"

The employee's phone number. The mask specifies 3
digits, then a dash, then 4 digits format for the phone
number.

FIELD DATE birthdate
The employee's birthdate.

FIELD REAL deduction_rate(4) MASK "##.##" ALIAS ded_rate

In this payroll a maximum of 4 deductions is allowed.
Each of the deductions are expressed as a percentage of the
gross in one of these 4 deduction rate fields. The mask
specifies 2 digits in front of the decimal and two decimal
places.

FIELD REAL gross_ytd MASK "######.32"
The employee's year to date gross pay. The mask
specifies a monetary amount.

FIELD REAL deduction_ytd(4) MASK “###3##.#3#" ALIAS ded_ytd
The employee's year to date totals for 4 deductions.

FIELD REAL net_ytd MASK "#####4.#4"
The employee's year to date net pay.

FIELD TEXT salaried OF 1 MASK "L"

This is a field that contains either a Y or N for yes
or no. The purpose is to state whether the employee is
salaried or not. Here the mask specifies one letter in the
field, converted to upper case.

FIELD REAL salary MASK "#####3.#3"
If the employee is salaried then this is the amount to
be paid with each pay check.

FIELD REAL regular MASK "##.##"
If the employee is not salaried then this field is the
regular hourly wage. Here the mask specifies 2 digits

25

FILE employee data

HEADER INTEGER total employees ALIAS tot emp
HEADER REAL total pay MASK "####sisis HFn
HEADER REAL total deductions(4) MASK "##########.##" ALTAS tot_ded

FIELD TEXT name OF 25
FIELD TEXT address! OF 30

FIELD TEXT address2 OF 30

FIELD TEXT address3 OF 30

FIELD INTEGER employee_no ALIAS emp no

FIELD TEXT phone no OF 7 MASK "###-Fagsn

FIELD DATE birthdate

FIELD REAL deduction rate(4) MASK "##.##" ALIAS ded_rate
FIELD REAL gross_ytd MASK "######. 44"

FIELD REAL deduction_ytd(4) MASK "FE####.#4" ALIAS ded_ytd
FIELD REAL net_ytd MASK "H#####. 44"

FIELD TEXT salaried OF 1 MASK ™"

FIELD REAL salary MASK "#HH###E. "

FIELD REAL regular MASK "g##, ##n

FIELD REAL overtime MASK M"##,##n

KEY TEXT name OF 30 = CAP$(name)
KEY INTEGER emp no = employee_no

before the decimal and two decimal places. The largest per-
missible value would be 99,99,

FIELD REAL overtime MASK “"##.#3"
If the employee is not salaried then this field is the
overtime hourly wage.

KEY TEXT name OF 30 = CAPS$ (NAME)
A key in order of the employee name, case ignored.

KEY INTEGER emp_no = employee_no
A key in order of the employee number.

26

EMPLOYEE MAINTENANCE

NAME: BB MBI N NN NN
ADDRESS: *%ﬁ{###*i**%**%Kﬁ#}*#*k**&}%#*
222222223 P e e
%)t%)(-%**i***&*{&**&***i***i
EMPLOYEE NUMBER: ######
PHONE: ###-#4##

BIRTH DATE s M358 008228

DEDUCTION RATES:
1) #4E 2) ##.44 3) #E.44 4) #4448

YEAR TO DATE TOTALS:
GROSS: ##EHEK.F#

DEDUCTIONS:
1) FERRREAR 2) BEARBEBE 3) BREBRE.BE 4) BRBEBE BH
NET: #HRREH.HH
SALARIED (Y/N): L
SALARY: #HE##H. 44 REGULAR: ##.4# OVERTIME: ##.44

Row: 1 Column: 1

Now choose menu option 3 - the option to paint a
screen. Answer the prompt with the form name employee_data.
Paint the screen as shown on the opposite page. Note that
the header fields are not part of the form - they are
handled by the payroll program. Go ahead and paint the
screen as you did in lesson 2, going through all the non-
header fields and assigning each a screen location. bon't
forget to type ESC S to save the form. Give it the name
employee_edit.

After you have saved the form, generate a file mainten~
ance module with BSC G, naming it employee_edit. When asked
for the name of the form, answer with employee_edit. When
you quit from the forms editor, be sure to compile the new
module. But before you compile it, you will have to edit
the module, finding and deleting all OPEN and CLOSE
statements. The reason for these changes is that the
payroll menu program OPENs all the necessary files. 1If one
of the auxilliary modules did also, the interpreter would
signal an error when it tried opening the same data base
twice.

27

FILE job_data

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

TEXT
TEXT
TEXT
REAL
DATE
DATE
DATE

name OF 30

description OF 50

job_no OF 6 MASK "LL###4

total cost MASK "FHEFHEBHER H4T
start_date

end_date

complete_date

KEY TEXT job no OF 6 = job no
KEY TEXT name OF 30 = CAP${name)

LESSON 4B

PAYROLL - Job Maintenance

Objectives:
- to create a job maintenance module

This section will create the data file and module which
keeps track of the various jobs the company is working on,
Enter the text editor with the file name job_data.ide. Type
in the statements on the opposite page and create the file
and module,

FILE job_data
The name of the file that will have the job data.

FIELD TEXT NAME OF 30
The name of the job.

FIELD TEXT description OF 50
A description of the job.

FIELD TEXT job_no OF 6 MASK "LL####"

The number of the job. Here the mask specifies the
format to be 2 letters and then 4 digits. See the reference
section under "MASK" for more information about masks.

FIELD REAL total_cost MASK “#####333#%.34"

The total cost of the job. As far as payroll is
concerned, an employees' wages for working on a job is the
only way this field will be changed. The mask specifies a
large monetary field.

FIELD DATE start_date
The date work started on the job.

FIELD DATE end_date
The date work ended on the job.

FIELD DATE complete_date

The date work was supposed to be completed on the job.
The above three fields are not a concern to payroll but are
included for completeness.

KEY TEXT job_no OF 6 = CAPS$(job_no)
A key in order of the job number.

28

JOB MAINTENANCE

NAME OF JOB g 36334333333 3303 3300330308 303030 2 %
DESCRIPTION e 33383634 336 3¢ 38 5 3 3¢ 35 30 36 3 30 2 2 3 53 38 3303 3038 3030303 30303 3303003 3 M3 333 3t

JOB NUMBER: LL####
TOTAL COST: HEEHRHARAR.BH
DATE UDRK STARTED: 36 3% 3¢ 3¢ 38 3¢ 3% 38 3¢ 38 3¢ 36 3¢ 34 3¢ 3¢ 34 3¢
END WORK DATE (projected): 636 636 36 36 3 336 36 3 36 334 3 334 3¢
DATE JUB CDMPLETED: -2 2223222223 232222 2

Row: 1 Column: 1

KEY TEXT name OF 40 = CAPS (name)
A key in order of the job name.

Now choose from the main menu option 3 to paint the
screen form. Simply copy the opposite page onto your screen
and select the fields in front of the prompts, as you did in
lesson 2 and lesson ({a. After saving the form and gener-
ating an editing module named job_edit, edit that module,
finding and deleting all OPEN and CLOSE statements. After
this, compile the module.

29

FILE hours_data

FIELD LONG record_no

FIELD DATE workdate

FIELD TEXT job_no OF 6 MASK "LLA###"

FIELD INTEGER employee no ALIAS emp no

FIELD REAL regular_hours MASK "## #F" ALIAS reg
FIELD REAL overtime hours MASK ™##.##" ALIAS ot

KEY INTEGER emp _no = emp_no
KEY TEXT job_nmo = job_no

LESSON 4C

PAYROLL - Hours Maintenance

Objectives:
- to create a hours maintenance module
- to learn about the file commands:
FIND, EOF
- to learn about the statements:
LABEL
IF ... ELSE ... ENDIF
LOCATE
PRINT
GOTO

This section will create the data file and module to
maintain the hours worked information. Enter the editor
with the file name hours_data.ide and type in the statements
on the opposite page. Then create the file and compile the
module as you did in lesson 4a. An explanation follows:

FILE hours_data
The data about the hours will be in file "hours_data".

FIELD LONG record_no

The record number of the hours worked report. This is
a LONG field to prevent overflow on an integer value (LONG
goes up to 2 billion).

FIELD DATE workdate
The date the hours were worked.

FIELD TEXT job_no OF 6 MASK “LL####"
The number of the job work was done on. The mask is as
specified for the job number in lesson 4b.

FIELD INTEGER employee_no ALIAS emp_no
The number of the employee doing the work.

FIELD REAL regular_hours MASK "##.##" ALIAS reg
The regular hours worked. This mask is the same as the
mask for the total hours worked in the employee_data file.

FIELD REAL overtime_hours MASK "##.%##" ALIAS ot

The overtime hours worked. This mask is the same as
the corresponding one in the employee_data file.

30

HOURS MAINTENANCE

REPORT NUMBER: ######H#EHH

DATE: EE.2-2-2.2- 223332222322
JOB NUMBER: LLE###
EMPLOYEE NUMBER: #H####
REGULAR HOURS: ##.##
OVERTIME HOURS: ##.##

Row: 1 Column: 1

KEY INTEGER emp_no = emp_no
A key to allow processing of the file in the order of
the employee number.

KEY TEXT job_no OF 6 = job_no
Another key, to allow processing of the file in the or-
der of the job_no.

Generate the data file and then from the main menu
choose option 3 - to create a form. Copy the opposite page
onto your screen and select the fields at the appropriate
spot in front of the prompts, as you did before in lesson 4a
and in lesson 2. Don't forget to save the module.

31

NOTE 1
NOTE Main Loop

MODULE hours_edit

INTEGER keyrium, temp
TEXT k OF 1
TEXT keystroke OF 1
TEXT keynam

weyium=1
GPEN 'hours_oata'
USE FILE hours_data NOKEY

SET TRAP TO errtrap

LABEL restart
SET FORM TO 'hours'
GOSUB printscreen

LacP
50SUB showkey
GJSuB enterall
GOSUB getchoice
GOSUS dochoice
ENDLOOP

END

NOTE ®ewss »
NCTE Reprint all fields on the screen

LABEL printscreen

CISFLAY record_no
DISPLAY workdate
CISPLAY job_no
DISPLAY employee_no
CISPLAY regular_hours
OISPLAY overtime _hours

RETURN

NCTE SASRENsanausnsninnaninny (1] ® an
MCTE Return single keystroke from menu

LRBEL getcnoice

LCCATE 24,1

1T 'SELECT: Insert Update Clear Delete First Last Next Previous Key Search Zuit';

REPEAT
LCCATE 24,8
xeystroke=CAPS(SETREY)

IF xeystroke<' ' THEN
PRINT '.*;
ELSE
PEINT xeystroke;
ENDIF

UNTIL {keystroxe=chr$(27)) OR {'IUCDFLNPKSQ' CT keystroke)

L3CATE 24,1

CLEAR LINE

RETURN

NOTE saxnnnssn EaRRRRR ERRNRARARAANRERRRNES
NOTE Select the appropriate action

LABEZL dochoice

Ch3E
WhEh keystroke='I' THEN
INSERT
ENDUHEN

WHEN <eystroxe='U' THEN
UPDATE
GOSUR printscreen
ENDUHEN

WHEK keystroke='C' TrEN
CLEAR FORM
ENOUHEN

MHEN weystrcke='0" TmEh
DE_ZTE CURRENT
IF RECORDOT TrIN
Gosu

Generate a form editing module with a name of
hours_edit. Then exit to the main menu and choose option 1
to edit the module just generated. The purpose here is to
add some checks to the editing of this form. Specifically,
the job and employee numbers should be checked for validity
when they were entered into the form, If they are not valid
then the operator should be told this and given an oppor-
tunity to re-enter the values.

Once in the editor move the cursor to the start of the
ENTER job_no line and type in the following line:

LABEL enter_job_no

LABEL is an IMS statement that marks a particular position
of a module. In this case, we are marking the "ENTER
job_no"™ line by the label "enter_job_no". The reason for
this will become apparent in a moment.

Move the cursor down one line and type in the
following:

FIND FILE job_data KEY job_no EXACT hours_data.job_no
USE FILE hours_data
IF EOF (job_data) THEN

LOCATE (8,40)

PRINT "ILLEGAL JOB NUMBER; RE-ENTER"

GOTO enter__job_no

ELSE

LOCATE (8,40)

PRINT job_data.name+" "
ENDIF

These lines do the checking for a valid job number.
FIND FILE job_data KEY job_no EXACT hours_data.job_no

This is an IMS statement that searches in the file job_data
(seen in lesson 4b) by its key job_mo for a record with the
job number field equal to the number in hours_data.job_no.
hours_data. job_no refers to the job_no field in the
hours_data file. hours_data.job_no has a period in the
middle, this means that the part before the period
(hours_data) is the file, and the part after the period
(job_no) is a field in that file. This is in fact the same
field referred to in the ENTER job_no statement. So what

32

ELSE
CLEAR FORM

WHEN keystroke='F' THEN
FIND FIRST
GOSUB printscreen
ENDWHEN

WHEN keystroke='L' THEN
FIND LAST
GOSUB printscreen
ENOWHEN

UWHEN keystroke='N' THEN
FIND NEXT
IF RECORD=0C THEN
CLEAR FORM
ELSE
GOSUB printscreen
ENDIF
ENOUHEN

WHEN keystroke='P' THEN
FIND PREVIOUS
IF RECORD=0 THEN
CLEAR FORM
ELSE
GCSUB printscreen
ENDIF
ENOUHEN

WHEN keystroke='K' THEN
GOSUB dokey
ENOWHEN

WHEN keystroke='S' THEN
FIND APPROX
IF RECORO0 THEN
GOSUB printscreen
ENDIF
ENDUHEN

WHEN keystroke='G' THEN
CLOSE ALL
END
ENDUHEN
ENDCASE

RETURN
N L # 00 s R R R R A AR R R R RE R AN A AR RS R RAACAN R RA RN RE RS

NGTE Enter cata into ail input fields

LABEL enterall

LGOR
ENTER record_ro
IF ESCAPE = 27 THEN EXIT : ENDIF
ENTER workdate
I7 ESCAPE = 27 THEN EXIT : ENGIF
ENTER job_no
IF ESCAPE = 27 ThEN EXIT : ENCIF
ENTER emcloyee_no
IF ESCAPE = 27 THEN EXIT : ENDIF
ENTER regular_hours
IF ESCAPE = 27 THEN EXIT : ENDIF
ENTER cvertime_hcurs
IF ESCAPE = 27 THEN EXIT ; ENCIF
ENGLOOP

RE TURN
NCTE sexsen - RRRERRRRALRAZRANE

NOTE Select ne key field

LASEL ookey
CLEAR SCREEN

PRINT

PRINT 'Chccse one field:'
PRINT

temp=1 3 GCSUB incent
PRINT 'NCKEY'

tenp=2 : GOSUB indent
PRINT 'emg_no'

temp=3 : GCSJE incent
FRINT !joc_nc'

PRINT

happens is that the user ENTERs a job number into the field,
and then the module looks in the job_data file to see if
that number exists.

USE FILE hours_data

Reselects hours_data to be the current file. This is impor-
tant to avoid confusion in any following field references
and file commands.

IF EOF(job_data) THEN

Once we have done a FIND statement we have to see if it ac-
tually found anything. That is what this statement does.
EOF is an IMS function that returns one - meaning a record
was not found (the End Of File was reached during the pre-
vious FIND), or zero - meaning a record was found. This
statement is saying "If the ENTERed job number was not found
then ...".

LOCATE (8,40)
PRINT "ILLEGAL JOB NUMBER; RE-ENTER"
GOTO enter_job_no

This is what is done if it was not found. First the message
"ILLEGAL JOB NUMBER; RE-ENTER"™ is PRINTed at screen coor-
dinates 8,40. LOCATE places the cursor at the eighth row
and the fortieth column. Then the GOTO statement causes ex-
ecution to continue at the label called enter_job_no. This
means that the module will go back to ENTERing the job num-
ber field, to let the user enter a legal number.

ELSEB

LOCATE (8,40)

PRINT job_data.name + " -
ENDIF

The ELSE statement is part of the IF structure. ELSE
always refers to the opposite condition of the preceding IF
statement, The IF statement was testing whether there was
no matching record in the job_data file. If that was true
then the statements between the IF and the ELSE are
executed. Then execution continues after the ENDIF. An
ELSE checks for when the IF statement was pot true (when
there is a matching record in the job_data file) and ex-
ecutes the statements between the ELSE and the ENDIF. The
PRINT statement shows the value of the name field in the
job_data file, (plus extra spaces at the end to print over
what was on the screen before), so the user can see if the
job number entered is the right one. Finally, the ENDIF
marks the end of the IF structure.

33

REPEAT
PRINT 'Selecticr? ';
INPUT temp

URTIL temp>=0 AND temp<=3

CASE
WHEN temp=1 THEN
USE NOKEY
ENOUHEN

wHEN temp=Z THEN
USE KEY emp_rio
ENDUHEN

WHEN temp=3 THEN
USE KEY joo_no
ENDWHEN

ENDCASE
IF temp>D THEN

keynum=temp
ENDIF

SET FORM TO 'rours'
GOSUB printscreen

RETURN

LABEL indent

IF keynum=temp THEN
PRINT ' = t;
ELSE
PRINT ' '
ENDIF
PRINT temp;' - ';

RETURN

NOTE LLTTTTTY
NOTE Display info on bottom line

LABEL showkey

CASE
WHEN keynum=1 THEN
keynam="NOKEY"*
ENOUHEN

WHEN keynum=2 THEN
keynam="'emp_no'
N

WHEN keynum=3 THEN
keynam=" job_na'
NOUHEN
ENDCASE

LOCATE 24,1
PRINT 'FILE: nours_data KEY: !';keynam;' FORM: hours RECORD #'3;RECORD;

RETURN

NOTE #%
NOTE General error handler

LABEL errtrap
CLEAR SCREEN

PRINT

PRINT

PRINT

HELP ERROR

IF ERROR=2 THEN
END

ENDIF

PRINT

PRINT

PRINT 'Type any key to continue: ';

k=GETKEY

RESUME AT restart

NOTE
NOTE

That does it for checking the entered job number. The
other field to check is the employee number field. Move the
cursor to the start of the ENTER employee_no line and type
in the following line:

LABEL enter_emp no

This marks the next line with the name of "enter_emp_no".
Move the cursor down one line and type in the following:

FIND FILE employee_data KEY emp_no EXACT
hours_data.emp_no
USE FILE hours_data
IF EOF (employee_data) THEN
LOCATE (9,40)
PRINT "ILLEGAL EMPLOYEE NUMBER; RE-ENTER"
GOTO enter_emp_no

ELSE

LOCATE (9,40)

PRINT employee_data.name+”™ .
ENDIF

This is the same basic idea as with the job number field.
First the user types in the employee number. Then the
module FINDs the employee record with that employee number.
If the record does not exist, ie. the end of the file was
reached, then a message reporting this to the user is
printed out and the module goes back to re-enter the field.
If the field did exist then the name of the employee with
the number is PRINTed out.)

You should double check this module to see if it is
correctly typed in. Compare it to the listing on the op-
posite page and correct any differences. Remember that in
IMS modules the text can be in upper or lower case, and
blank lines and extra spaces between words (except in TEXT
constants) are ignored.

Finally, don't forget to find and delete any OPEN or
CLOSE statments. Once you are finished, save the changes,
exit the text editor and choose option 5 to compile the
module.

34

FILE check_data

HEADER LONG check_req no

FIELD INTEGER employee_number ALIAS emp_no

FIELD REAL gross MASK T###### HH"

FIELD REAL net MASK "HEFREH.HHM

FIELD REAL deduction(4) MASK "HH##R#.##" ALIAS ded

KEY INTEGER emp no = employee_number

LESSON 4D

PAYROLL - Check_bData File

Objectives:
- to create a file for the check data
-~ to learn how to modify a report program,

In this section the file to hold the check information
will be made. The check information is the wages and deduc-
tions for each employee. Notice that a module to edit them
is not needed; they will be automatically maintained by a
payroll module using the data from the other files. Enter
the text editor and answer the prompt with check.ide. Type
in the statements on the opposite page and create the file,
but do not create a form to edit this file.

FILE check_data
The file holding the check information will be called
"check_data".

HEADER LORG check_reg_no
This header field contains the check register number
of the next check to be printed out.

FIELD INTEGER employee_number ALIAS emp_no
The number of the employee.

FIELD REAL gross MASK "######.#3"
The gross amount of wages for the pay period. This
mask specifies a monetary amount.

FIELD REAL deduction(4) MASK "$######.38" ALIAS ded
The amount of each deduction for the pay period.

FIELD REAL net MASK "######.#84"
The net amount of this check.

KEY INTEGER emp_no= emp_no
A key in order of the employee number.

35

[QahEl —
CHECK INFORMATION REPORT

PAGE
B R 1vARY FILE;%
FREHEE 5030030 0008 3 03 365 36 K3 0 36 36 363 [T 1] BERERE BH [T}

HERRE A4
FhisRs A
RudRi 44

TOTAL GROSS TOTAL DEDUCTIONS TOTAL NET
HidbAE A1 HERRAE AR EE

Row: 1

M -0 OF REPGRT.

Line: 1 Column: 1

After generating the check_data data base with main
menu option 2, select the report writer, option 4. When the
following prompt appears:

Data base file(s):

type check_data employee_data. Paint the report form which
appears on the opposite page.

First set the left margin to a value of 1 by pressing
“B L, then entering the number 1. Set the bottom margin to
a value of 64 with "B B and entering the number.

The names of some of the data fields on the opposite
page are not very obvious. In the PRIMARY FILE section, the
field under the Gross title is check_data.gross. The four
fields under the Deductions title are the four field array
elements of check_data.ded: check_data.ded(1l) through
check_data.ded(4), and the field under the Net title is
check _data.net. Place the above fields on the report form
with the "F P command, and selecting the appropriate field.
Note that the Gross, Deductions, and Net titles are actually
entered in the HEADER section.

In the TOTALS section, the field under the TOTAL GROSS
title is check_data.gross, the field under the TOTAL DEDUC-
TIONS title is check_data.ded(1l), and the field under the
TOTAL NET title is check_data.gross. These fields are
summated, so they must be placed on the report form by
typing “F S and selecting the appropriate field.

Once you have painted the report form, save it with the
ESC S command sequence, answering the

SAVE; file name:

prompt with check. Once this is completed, type ESC G to
generate the report program. Answer the

GENERATE; name of output file:
prompt with check_report. When the query

Index the primary data base (Y*/N) ?
appears, answer Y, then select the emp_no key for the
check_data data base, and finally, press ENTER or RETURN in

response to the following prompt

Field expression to match key:

36

when it appears. This last sequence of three questions by
the computer is designed to allow the user to index the
primary data base in a flexible manner.

Now that you have saved and generated your report, type
ESC Q0 to quit the reports editor. From the main menu, enter
the text editor (selection 1), and enter check_report in
response to the prompt. When the text editor comes up, you
will be editing the generated report program.

Search for the following line:
al = al + check_data.gross
change this to

al = al + check_data.gross - check_data.ded(1) -
check_data.ded(2) - check_data.ded(3) - check_data.ded(4)

(Note that this is a single line). Next, search for the
following line:

a3 = a3 + check_data.deduction(1l)
change this line to be:

a3 = a3 + check_data.ded(1l) + check_data.ded(2) +
check_data.ded(3) + check_data.ded(4)

(This represents a single line). These changes are needed
because the reports form editor does not allow the user to
enter field expressions when printing or summing fields;
only single data fields are allowed.

Next, find the line with the statement:
LABEL clean_up
Immediately after it, enter the following line:

UNLINK FILE employee_data

This restores the state of the file relations prior to the
execution of the report module.

Finally, you must also find and delete any OPEN or
CLOSE statments. Once you have finished these changes,
don't forget to save them before exiting to the main menu
and compiling the program.

37

NOTE this is the posting part of the payroll program
MODULE paypost

real amount,deduct(4),temp
integer old_employee,count

USE FILE employee data KEY emp_no
USE FILE job_data KEY job_no
FIND FILE hours data KEY emp_no FIRST
WHILE RECORD<>Q DO
amount=0,deduct(1)=0,deduct(2)=0,deduct(3)=0,deduct(4)=0
old_employee=hours_data.emp_no
FIND FILE employee data EXACT old_employee
WHILE NOT(EOF (hours_data)) AND hours_data.emp_no=old_employee DO
IF employee_data.salaried="Y" THEN
amount=employee_data.salary
ELSE
amunt=amount+hours_data.reg‘employee_data.regUlard-hours_data.ot‘employee_data.cvertime
ENOIF
FIND FILE job_data EXACT hours data.job_no
IF RECORD THEN
.total cost=.total cost+amount
UPDATE
ELSE
PRINT "Job #";hours_data.job_no;" not found."
ENDIF
FIND FILE hours_data NEXT
ENOWHILE
employee_data.total pay=employee data.total_ pay+amount
count=1, temp=0
WHILE count<=4 DO
deduct(count)=employee data.deduction_rate(count)/100%amount
employee_data.tot_ded(count)=employee_data.tot_ded(count)+deduct (count)
employee_data.ded_ytd(count)=employee_data.ded_ytd(count)+deduct(count)
check_data.ded(count)=deduct(count)
temp=temp+deduct(count)
count=count+1
ENDWHILE
enployee_data.gross_ytd:employee_data.gross_ytd+amunt
employee_data.net_ytd=employee data.net_ytd+amount-temp
IF EOF (employee_data) THEN
PRINT "Employee #";0ld_employee;" not found."
ELSE
UPDATE FILE employee data
ENDIF
check_data.emp_no=employee_data.emp_no
check_data.gross=amount
check_data.net=amount-temp
INSERT FILE check_data
USE FILE hours_cdata
ENDWHILE

CLEAR FILE hours data
END

LESSON 4E

PAYROLL - Putting It All
Together

Objectives:
- to create the posting module
- to create the menu module
-~ to learn file commands
LINK
INSERT
CLEAR
REINDEX
-~ to learn control commands
WHILE ... ENDWHILE
IF ... ELSE ... ENDIF
LABEL
GOTO
CALL
CASE ... WHEN ... ENDWHEN ... ENDCASE
-~ and to learn the INPUT and CLEAR SCREEN
command

This section will now put all the parts of the payroll
package together. There are two things that still need to
be done. First of all, the posting module which outputs
records for the check writer has to be written, and finally
a module which prints a menu of choices to operate payroll
has to be created.

Enter the text editor with the file name paypost. Type
in the statements on the opposite page. When finished
typing, save the text and compile the module. This is the
posting module which reads in all the hours records and up-
dates the employee records, the job records, and writes the
amount of each to the check_data file. An explanation of
each of the lines follows below:

NOTE this is the posting part of the payroll program
This is a comment saying what the module is supposed to
do.

MODULE paypost
This names the module as "paypost".

38

NOTE this is the posting part of the payroll program
MODULE paypost

real amount,deduct(4),temp
integer old_employee,count

USE FILE employee data KEY emp no
USE FILE job_data KEY job _no
FIND FILE hours_data KEY emp_no FIRST
WHILE RECORD<>Q DO
amount=0,deduct(1)=0,deduct(2)=0,deduct(3)=0,deduct (4)=0
old_employee=hours_data.emp_no
FIND FILE employee data EXACT old_employee
WHILE NOT(EOF (hours_data)) AND hours_data.emp_no=old_employee DO
IF employee_data.salaried="Y" THEN
amount=employee_data.salary
ELSE
amount=amount+hours_data.reg*employee_data.regular+hours_data.ot*employee_data.ov:
ENDIF
FIND FILE job_data EXACT hours_data.job_no
IF RECORD THEN
.total cost=.total_cost+amount
UPDATE
ELSE
PRINT "Job #";hours data.job_no;" not found."
ENDIF
FIND FILE hours_data NEXT
ENDWHILE
employee data.total pay=employee data.total_ pay+amount
count=1, temp=0
WHILE count<=4 DO
deduct(count)=employee data.deduction_rate(count)/100%*amount
employee_data.tot_ded(count)=employee data.tot_ded(count)+deduct(count)
employee data.ded_ytd(count)=employee data.ded_ytd(count)+deduct(count)
check_data.ded(count)=deduct (count
temp=temp+deduct (count)
count=count+1
ENDUHILE
employea_pata.gross_ytd:employeg_pata.grosq_ytd+amount
employea_ﬂata.net_ytd=employeq_data.net_ytd+amount-temp
IF EOF (employee_data) THEN
PRINT "Employee #";o0ld_employee;" not found."
ELSE
UPDATE FILE employee data
ENDIF
check_data.emp_no=employee data.emp_no
check_data.gross=amount
check_data.net=amount-temp
INSERT FILE check_data
USE FILE hours_data
ENDWHILE

CLEAR FILE hours_data
END

REAL amount,deduct(4),temp

amount is a variable that acts as the gross the
employee will get paid, deduct(4) is an array that acts as
the total deductions amount, and temp is a temporary holder
for the sum of the deductions.

INTEGER old_employee,count

old _employee is a variable to keep track of the current
employee as the hours file is read, and count is a variable
to help read through the deduction arrays.

USE FILE employee_data KEY emp_no
USE FILE job_data KEY job_no
FIND FILE hours_data KEY emp_no FIRST

Set emp_no to be the default key for employee file,
job_no to be the default key for job file, and finally, find
the first record in the hours file, indexing that file by
the employee number.

WHILE RECORD<>0 DO

" WHILE is a kind of program control statement. It is
saying that while something is true keep executing the part
between this WHILE and the following matching ENDWHILE.
RECORD is a function that returns the number of the current
record. 1If the record were not found or there were no more
records to go through, then RECORD is equal to zero. So
WHILE RECORD <>0 DO is saying that while there are more
records to read in the hours_data file do the following...

<> is called a relational, because it relates a value
on the left to a value on the right of it. Symbols or let-
ters can be used for relationals; the following list ex-
plains the common relationals:

or EQ equal to

> or GT greater than
< or LT 1less than
>= or GE greater than
<= or LE less than
<> or NE not equal to

and for relating text values:

BW begins with

CT* contains

SL. sounds like
So the above line could be: WHILE RECORD NE 0 DO
amount=0,deduct (1) =0,deduct (2) =0,deduct (3) =0,deduct (4) =0
0ld_employee=hours_data.emp_no

Initialize the variables, Set amount and the deduct

39

NOTE this is the posting part of the payroll program
MODULE paypost

real amount,deduct(4),temp
integer old _employee,count

USE FILE employee data KEY emp_no
USE FILE job_data y KEY Jjob_no
FIND FILE hours data KEY emp_no FIRST
WHILE RECORDS>Q DO
amount=0,deduct(1)=0,deduct(2)=0,deduct(3)=0,deduct(4)=0
old_employee=hours_data.emp_no
FIND FILE employee data EXACT old] employee
WHILE NOT(EOF (hours _data)) AND hours_data.emp_no=old_employee DO
IF employee_¢ data.salaried="Y" THEN
amount=employee_data.salary
ELSE
amount=amount+hours_data.reg*employee_data.regular+hours_data.ot*employee_data.overtime
ENDIF
FIND FILE job_data EXACT hours_data. job_no
IF RECORD THEN
.total cost=.total cost+amount
UPDATE
ELSE
PRINT "Job #";hours_data. job_no;" not found."
ENOIF
FIND FILE hours_data NEXT
ENOWHILE
employee_data.total pay=employee data.total_pay+amount
count=1, temp=0
WHILE count<=4 DO
deduct(count)=employee_data.deduction_rate(count)/100*amount
employee_data.tot_ded(count)=employee_data.tot_ded(count)+deduct (count)
employee_data.ded_ytd(count)= employee_data.ded_ytd(count)+deduct(count)
check_data.ded(count)=deduct (count)
temp=temp+deduct (count)
count=count+1
ENDUMILE
employee_data.gross_ytd=employee data.gross_ytd+amount
employee_data.net_ytd=employee_data.net_ytd+amount-temp
IF EOF (employee_data) THEN
PRINT "Employee #";old_employee;™ not found."
ELSE
UPDATE FILE employee_data
ENOIF
check_data.emp_no=employee_data.emp_no
check_data.gross=amount
check_data.net=amount-temp
INSERT FILE check data
USE FILE hours data
ENDWHILE

CLEAR FILE hours_data
END

array to zero and old_employee to the value of the employee
number field in the current record of the hours_data file.

FIND FILE employee_data EXACT old_employee
Find the entry in the employee file for the employee
number given in the hours file.

WHILE NOT(EOP(hours_data)) AND hours_data.emp_no =
old_employee DO
This WHILE loop is for reading the hours records of

each employee. It is saying that WHILE there are more
records to read and the present record is still on the same
employee (hours_data.emp_no = cld_employee) do the

following.

IF employee_data.salaried ="Y" THEN
amount=employee_data.salary
If the employee is salaried then the amount is the
employee's salary.

ELSE
amount=amount+hours_data.reg*employee_data.reqular+
hours_data.ot*employee_data.overtime
If the employee is not salaried then the amount is the
number of hours in the hours_data file times the rate in the
employee_data file, both reqular and overtime. This is
added to amount because the employee may have many records
in the hours file and the gross from each must be added into
the running total.

ENDIP
End the previous IF statement.

FIND FILE job_data EXACT hours_data.job_no
Find the job file entry corresponding to the hours file
job being processed.

IF RECORD THEN
.total_cost=.total_cost+amount
UPDATE
If a job file entry was found (IF RECORD THEN) update
the total cost of the job (in the job file). Note the use
of .total_cost: the "." forces the use of the current file.

ELSE
PRINT "Job #";hours_data.job_no;" not found."
ENDIF
Warn the operator when no corresponding job is found,
and terminate the IF statement.

FIND PILE hours _data NEXT
The next record in the hours_data file is found.

40

NOTE this is the posting part of the payroll program
MODULE paypost

real amount,deduct(4),temp
integer old_employee,count

USE FILE employee_data KEY emp_no
USE FILE job_data KEY job_no
FIND FILE hours_data KEY emp_no FIRST
WHILE RECORD<>0 DO
amount=0,deduct(1)=0,deduct(2)=0,deduct(3)=0,deduct (4)=0
old_employee=hours_data.emp_no
FIND FILE employee data EXACT old_employee
WHILE NOT(EOF (hours_data)) AND hours_data.emp_no=old_employee DO
If employee_data.salaried="Y" THEN
amount=employee_data.salary
ELSE
amount:amount+hours_pata.reg*employee_gata.regular+hours_data.ot*employeq_data.ove
ENDIF
FIND FILE job_data EXACT hours_data. job_no
IF RECORD THEN
.total cost=.total_cost+amount
UPDATE
ELSE
PRINT "Job #";hours data.job_nos" not found."
ENDIF
FIND FILE hours data NEXT
ENDWHILE
employee_pata.total_pay:employee_pata.total_pay+amount
count=1, temp=0
WHILE count<=4 DO
deduct(count)=employee_pata.deduction_;ate(count)/1OU*amount
employee_data.tot_ded(count)=employee data.tot_ded(count)+deduct(count)
employee_data.ded_ytd(count)=employee data.ded ytd(count)+deduct(count)
check_data.ded(count)=deduct (count)
temp=temp+deduct (count)
count=count+1
ENDWHILE
employee_pata.gross_ytd:employeq_ﬂata.gross_ytd+amount
employeq_data.net_ytd:emyee_pata.net_ytd+amount-temp
IF EOF (employee data) THEN
PRINT "Employee #";o0ld_employee;" not found."
ELSE
UPDATE FILE employee_data
F

check_data.emp_no=employee_data.emp_ng
check_data.gross=amount
check_data.net=amount-temp
INSERT FILE check_data
USE FILE hours data

ENDLE

CLEAR FILE hours data
END

ENDWHILE

End the previous WHILE statement. This means that when
the previous WHILE loop is finished, (which is when we
finished reading all the hours records for the employee), we
go to the next line after this ENDWHILE.

employee_data.total_pay=employee_data.total_pay+amount
Update the total_pay header field in the employee_data
file.

count=1, temp=0
WHILE count<=4 DO

Assign count a value of 1, and then set up a WHILE loop
that executes 4 times with count initially equal to 1, then
2, then 3, then finally 4. Additionally, temp is initial-
ized to 0.

deduct (count) =amount *employee_data.deduction_rate (count)/100
calculate the next deduction amount.

employee_data.tot_ded(count)=employee_data. tot_ded(count) +de
duct (count)
employee_data.ded_ytd(count)=employee_data.ded_ytd(count) +de
duct (count)

check_data.ded (count)=deduct (count)

Update the deduction fields. The deduct(count) array
elements are added to the employee file header fields and to
the employee record year to date fields. 1In the check file,
the deduction amount is placed in the deduction array for
that particular check payment.

temp=temp+deduct (count)
count=count+1l

Update the deductions total (in temp), and increment
count in order to process the next deduction.

ENDWHILE

Loop back to the WHILE count<=4 DO statement in order
to see if more deductions need tc be done. If there are
none, continue processing at the following statement:

employee_data.gross_ytd=employee_data.gross_ytd+amount
employee_data.net_ytd=employee_data.net_ytd+amount-temp

Update the employee gross year to date field, and the
employee net year to date field.

41

NOTE this is the posting part of the payroll program
MODULE paypost

real amount,deduct(4),temp
integer old employee,count

USE FILE employee data KEY emp_no
USE FILE job_data KEY job_no
FIND FILE hours data KEY emp_no FIRST
WHILE RECORD<>Q DO
amount=0,deduct(1)=0,deduct(2)=0,deduct(3)=U,deduct(4)=0
old_employee=hours_data.emp_no
FIND FILE employee data EXACT old_employee
WHILE NOT(EOF (hours_data)) AND hours_data.emp_no=old_employee DO
IF employee_data.salaried="Y" THEN
amount=employee_data.salary
ELSE
amount:amount+hours_pata.reg*employeg_data.regular+hours_pata.ot*employee_ﬂata.over
ENDIF
FIND FILE job_data EXACT hours_data. job_no
IF RECORD THEN
.total_cost=.total_cost+amount
UPDATE
ELSE
PRINT "Job #";hours data.job_no;" not found."
ENDIF
FIND FILE hours data NEXT
ENDWHILE
employee_pata.totaL_pay:employee_pata.totaL_pay+amount
count=1, temp=0
UWHILE count<=4 DO
deduct(count)=employee data.deduction_rate(count)/100%*amount
employee_data.tot_ded(count)=employee_data.tot_ded(count)+deduct (count)
employee _data.ded_ytd(count)=employee data.ded_ytd(count)+deduct(count)
check_data.ded(count)=deduct (count)
temp=temp+deduct(count)
count=count+1
ENDWHILE
employee_pata.gross_ytd=employeq_pata.gross_ytd+amount
employee_data.net_ytd:employeg_pata.net_ytd+amount-temp
IF EOF(employee data) THEN
PRINT "Employee #";old employee;" not found."
ELSE
UPDATE FILE employee_data
ENDIF
check_data.emp_no=employee data.emp_no
check_data.gross=amount
check_data.net=amount-temp
INSERT FILE check_data
USE FILE hours_data
ENDWHILE

CLEAR FILE hours data
END

IF EOF(employee_data) THEN
PRINT "Employee #";o0ld_employee;" not found."
ELSE
UPDATE FILE employee_data
ENDIF
Update the employee file if the employee number is
valid,

check_data.emp_no=employee_data.emp_no
check_data.gross=amount
check_data.net=amount-temp

Update all the fields of the check_data file record.
The number comes from the employee_data file, and the gross
and net amounts come from variables already calculated.

INSERT FILE check_data
Add the record just assigned to the check_data file.

USE FILE hours_data
Set the default file to the hours file. This loads the
RECORD variable with the record number the hours file is on.

ENDWHILE

End the first WHILE. This means that when the condi-
tion in the first WHILE is no longer true, (ie. there are no
more records to read in the hours_data file), go to the next
statement after this ENDWHILE.

CLEAR FILE hours_data
Delete all the hours_data file items, since they have
all been processed.

END
The end of the module.

42

Here is a general explanation of this module. The
module reads through all the records in the hours file -
that is the purpose of the first WHILE statement. The
second WHILE statement goes through all the records for a
single employee, In this second WHILE loop the module cal-
culates the total gross that the employee will earn by ad-
ding up the hours in the individual hour records. These
hours are multiplied by the rates in the individual
employee's record to get the gross pay, and the deductions
are calculated from this gross pay.

When the next record is for a different employee, the
module updates the employee fields to account for the new
wages and deductions. The data for the check file is then
put into a check data record and INSERTed into the file. At
this point all the payroll information about the employee
has been read and updated. The module goes on to the next
employee. The second WHILE loop will then handle this next
employee, then the next, ..., until all the employees have
been done.

43

NOTE this is the menu to operate the payroll program

MODULE payroll

TEXT

OPEN
OPEN
OPEN
OPEN

Loor
CLEAR
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

choice OF 1

"employee_data"
" job_data"
"hours_data"
"check_data"

SCREEN

"PAYROLL MAINTENANCE";TAB(40);taday;"

. Quit"

. Employee Maintainance”
Job Maintainance™

Time Maintainance"

. Post Time Reports"

"5, Report On Posted Records"

"ENTER YOUR SELECTION: ";

choice=GETKEY
IF choice<™ " THEN
PRINT n.®

ELSE

PRINT choice

ENDIF

IF choice<"0" OR choice>"S" THEN

REDC

ENDIF

CASE

WHEN choice="0" THEN
CLOSE ALL
QuIT

ENDWHEN

WHEN choice="1" THEN
CALL employee_edit

ENDWHEN

WHEN choice="2" THEN
CALL job_edit

ENDWHEN

WHEN choice="3" THEN
CALL hours_edit

ENDWHEN

WHEN choice="4" THEN
CALL paypost

ENDWHEN

WHEN choice="5" THEN
CALL check_report

ENDWHEN

ENDCASE

ENDLOOP

"stime

On the opposite page you see the module for the menu
which controls all the features of the payroll program. En-
ter the text editor with the file name payroll. Type in the
module, and when finished compile it. An explanation of the
statements follows below:

NOTE this is the menu to operate the payroll program
This is just a comment on what the module is supposed
to do.

MODULE payroll
This identifies the module as "“payroll".

TEXT choice OF 1

This is a variable to contain the user's selection from
the menu.

OPER FILE "employee_data®
OPER FILE "job_data®
OPER FILE “hours_data*”
OPER FILE "check_data"
This opens all the files of the payroll program,

LOOP
LOOP is a statement that marks the beginning of a group
of statements which may be repeated more than once.

CLEAR SCREEN
This will clear the screen.

PRINT
PRINT
PRINT "PAYROLL MAINTENANCE";TAB(40) ; TODAY;" “;TIME
PRINT
PRINT TAB(10);"0. Quit"
PRINT TAB(10);"1. Employee Maintenance"®
PRINT TAB(10);"2. Job Maintenance”
PRINT TAB(10);"3. Time Maintenance"
PRINT TAB(10);"4. Post Time Reports"”
PRINT TAB(10);"5. Report On Posted Records®
PRINT
This series of PRINT statements prints out the menu.
TODAY is a function that returns the current date, and TIME
is another function that returns the current hours, minutes,
and seconds.

44

NOTE this is the menu to operate the payroll program

MODULE payroll

TEXT choice OF 1

OPEN "employee data"
OPEN "job_data"

OPEN "hours_data"
OPEN "check_data"

LOOP
CLEAR
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

SCREEN

"PAYROLL MAINTENANCE";TAB(QU);today;"
TAB(10);"0. Quitm

TAB{10);™ . Employee Maintainance"
TAB(10);"2. Job Maintainance"
TAB(10);"3. Time Maintainance"
TAB(10);"4, Post Time Reports"
TAB(10);"S. Report On Posted Records"

"ENTER YOUR SELECTION: ";

choice=GETKEY
IF choice<" " THEN
pRINT 7" . n

ELSE

PRINT choice

ENDIF

IF choice<"0O" OR choice>"5" THEN

REDO

ENDIF
CASE

WHEN choice="0" THEN
CLOSE ALL
QuiT

ENDWHEN

WHEN choice="1" THEN
CALL employee_edit

ENDWHEN

WHEN choice="2" THEN
CALL job_edit

ENDWHEN

WHEN choice="3" THEN
CALL hours_edit

ENDWHEN

WHEN choice="4" THEN
CALL paypost

ENDWHEN

WHEN choice="5" THEN
CALL check_report

ENDWHEN

ENDCASE

ENDLBOP

"stime

PRINT "ENTER YOUR SELECTION :";
choice=GETKEY
IP choice<" " THEN

PRINT *."
ELSE

PRINT choice
ENDIF

These statements will prompt the user to enter a number

corresponding to one of the above PRINTed choices. After a
single keystroke is placed in choice, it is echoed to the
screen, since GETKEY does not echo its value.

IF choice<"0®" OR choice>"5" THEN
REDO
ENDIF
If the choice was too low (choice<™0") or the choice
was too high (choice>"5") then execution goes back to LOOP.

CASE

CASE marks the start of a series of WHEN ... ENDWHEN
statements. Each WHEN has a condition and then some action
between the WHEN and the ENDWHEN. What happens is that each
condition is tested until a condition is found that is true.
When this condition is found the statements between this
WHEN ... ENDWHEN are executed, and then execution continues
after the matching ENDCASE.

WHEN choice="0" THEN
CLOSE ALL
QUIT
ENDWHEN
This will close all the open files and stop execution.

WHER choice="1" THEN

CALL employee_edit
ENDWHEN

If the choice were 1 then the module to edit the

employee_data file, (created in LESSON 4A), is CALLed.
CALLing simply means that the module named is executed and
when it is finished, execution continues at the statement
after the CALL.

WHEN choice="2" THEN
CALL job_edit
ENDWHEN
If the choice were 2 then the module to edit the
job_data file, (created in LESSON 4B), is CALLed.

45

PAYROLL MAINTENANCE January 18, 1986 12:55:39

. Quit

. Employee Maintainance

. Job Maintainance

. Time Maintainance

. Post Time Reports

. Report On Posted Records

ENTER YOUR SELECTION:

WHEN choice="3" THEN
CALL hours_edit
ENDWHEN
If the choice were 3 then the module to edit the
hours_data file, (created in LESSON 4C), is CALLed.

WHEN choice="4" THEN
CALL paypost
ENDWHEN

If the choice were 4 then the posting module is called.

WHER choice="5" THEN
CALL check_report
ENDWHEN
If the choice were 5 then the report module, created in
LESSON 4D, is called to print out a report.

ENDCASE
This marks the end of the CASE, meaning no more WHEN
... ENDWHEN statements are allowed.

ENDLOOP
This marks the end of the LOOP. Execution will con-
tinue at LOOP.

So there is our payroll program. Go to the main menu
and press 6 to execute the payroll module. If all has gone
well, you will get a screen like the one on the opposite
page. The first thing to be done is to type in some
employee and job data records. Next, type in hours records
for those employees on these jobs. Then choose the option
to post these reports. Finally, choose the report option to
print out the check_data information.

If something does go wrong during execution of one of
the modules, so that a module stops with an error message,
carefully check the statements you typed in. Most probably
you made a typing error in one of the statements, so simply
correct it, recompile and try again. These modules have
been extensively tested and they do work!

46

LESSON 5

BACKUPS AND MODIFYING STRUCTURE

Objectives:
- to learn how to backup and change the
structure of data files
- to learn the COPY file command

Backups - file structure maintaiped

COPY (see COPY in reference manual for more details) is
used to make backups of existing data files. In the
simplest case where data is to go unchanged from one file to
its backup file the operation is quite straightforward. You
must first open the data file, copy the structure of that
data file to an unopened backup file, (if the file exists it
will be overwritten), and finally open the backup file and
copy all (or some) of the information from the data file to
the backup file. For example in IMS interactive mode:

OPEN "mail_list"

COPY STRUCTURE OF FILE mail_list TO ™mail_listbak™"
OPEN "mail_listbak™"

COPY FILE mail_list TO FILE mail_listbak

This will open the data file mail_list, copy its structure
to file mail_listbak, then open mail listbak and copy the
data.

Since at the end of a COPY statement there may be a
range specification, the COPY statement could be made into
the following:

COPY FILE mail_list TO FILE mail_listbak LET
mail_listbak.addressl=
CAP$(mail_list.addressl)

PRINT name

This does the same copy as before except the field
mail_listbak.addressl will be in capital letters and the
name field of the record will be printed out as it is
copied. Note that the current file in a COpy statement is
the first file, so the above statement could be written:

47

COPY FILE mail_list TO PILE mail_listback LET
mail_list.addressl = CAPS(addressl)
PRINT name

Modifying Structure

COPY is also used to modify the structure of a file.
The procedure is to create a new file with the wanted
structure, then use a COPY with LET statements to assign
data from the old file to the new fields of the new file.

For example, suppose the mail list file in the previous
example didn't have a comment field. It could be added by
creating a new file with all the same fields and keys as the
old mail list file plus a comment field. Then the following
Statements would copy the data into the new file:

OPEN "mail_list"

OPEN "mail_list2"

COPY FILE mail_list TO FILE mail_list2 LET
mail_list2.comment ="New Comment®

Since mail_list2 is the new file and it has the same field
names as the old mail_list file, the contents of these
fields are copied as before. However, file mail_list2 has a
new field called comment, and this is explictly assigned to
in the LET statement.

Adding another key is even simpler. In a COPY state-
ment the keys are assigned automatically; no assignment is
needed or allowed. To add or take away keys one would
create a file with the same fields and more or fewer keys,
open both files and copy the old one to the new one.

48

MODULE error_trap demo

TEXT a$ OF 25
DATE dt,dt2
INTEGER n
REAL r

SET TRAP T0 errortrap
PRINT "Enter a date :";

LABEL date_enter

INPUT a$

dt=DATE(a$)

PRINT "Enter another date :";

INPUT dt2

n=INTEGER(dt-dt2)

PRINT "There are "; ABS(n); " days between the two dates."

PRINT "Enter a number: ";
INPUT r
PRINT ™ divided by ";r;" is ";1/r

OPEN "filet™ AS f1
CLOSE 1

END

LABEL errortrap

PRINT M"#t® FRROR st
CASE
WHEN ERROR=12 THEN
PRINT "Improper date'"
PRINT ™Please re-enter™
RESUME AT date_enter
ENDWHEN
WHEN ERROR=18 THEN
PRINT "division by zero"
PRINT "resuming execution"
RESUME
ENDWHEN
WHEN ERROR=42 THEN
PRINT "Improper file named in OPEN"
QUIT
ENDWHEN
PRINT "Abnormal error"
HELP ERROR
RETRY
ENDCASE

LESSON 6

Error Trapping

Objectives:
To learn about:

Error trapping statements
- SET TRAP TO
- RESUME
- RESUME AT
- RETRY

other statements
- PRINT
- DATE
- ABS
- QuIT
- END

Error trapping allows the module to handle errors in a
straightforward manner. For a full list of errors see the
appendix in the reference manual under ERROR NUMBERS.

Basically, the idea of error trapping is that all er-
rors which can occur during execution of a module are as-
signed a number. These error numbers can be specially
tested by an "error trapper®™, which will then take ap-
propriate action to handle the error.

Enter the text editor with the file name error.imo.
Type in the statements shown on the opposite page, compile
and then execute the program. An explanation follows below:

MODULE error_trap_demo
The name of this module is error_trap_demo.

TEXT a$ of 25

A TEXT variable, called "a$" is declared to have a
length of 25 characters.
DATE dt,dt2

Two DATE variables, called "dt" and "dt2", are
declared.
INTEGER n

An INTEGER variable, called "n", is declared.

49

MODULE error_trap_demo

TEXT a$ OF 25
DATE dt,dt2
INTEGER n
REAL r

SET TRAP TO errortrap
PRINT "Enter a date :";

LABEL date_enter

INPUT a%

dt=DATE(a$)

PRINT "Enter another date :";

INPUT dt2

n=INTEGER(dt-dt2)

PRINT "There are "; ABS(n); " days between the two dates."

PRINT "Enter a number: ";
INPUT ¢
PRINT " divided by ";r;" is ";1/r

OPEN "file1" AS 1
CLOSE f1

END

LABEL errortrap

PRINT Mstit® FRROR *xxn
CASE
WHEN ERROR=12 THEN
PRINT "Improper date"
PRINT "Please re-enter"
RESUME AT date_enter
ENDWHEN
WHEN ERROR=19 THEN
PRINT "division by zero"
PRINT "resuming execution"
RESUME
ENDWHEN
WHEN ERROR=42 THEN
PRINT "Improper file named in OPEN"

PRINT "Abnormal error"
HELP ERROR
RETRY

ENDCASE

REAL r
A REAL variable is declared with the name of "r".

SET TRAP TO errortrap

This is the first of the error trapping statements, and
it should come near the start of the module. When this
statement is executed it tells IMS that should any kind of
error occur, to go to the statement after the label
"errortrap". For example, if anywhere in the module a
statement divides a number by zero then execution will con-
tinue at the statement after the "LABEL errortrap"”
statement. The "LABEL errortrap" statement must therefore be
present in the module.

By the way, if a module has no error trap, (ie. it has
no SET TRAP TO statement), and an error occurs then execu-
tion stops and IMS prints the error number. Also note that
an error trap exists only for that module. This means that
a SET TRAP TO statement is in effect only while the module
in which it occurs is executing.

PRINT “"Enter a date :";
This PRINT statement prompts the operator to enter a
date, like "JUNE 23,1985",

LABEL date_enter
This marks the following statement for the error
trapper, and its purpose will become obvious later.

INPUT a$
This lets the operator enter a value to respond to the
previous prompt message, and the value is stored in as$.

dt=DATE(a$)

Note that the previous statement inputs a value into a
variable of type TEXT, not of type DATE. This is only for
illustration; the next two lines show an easier way to do
this. But when you have a TEXT value (a$), and you want to
have it converted to a DATE value (dt), you can use the DATE
statement as shown above. Remember that the TEXT value
should be in a recognizable date format.

PRINT “"Enter another date :";
INPUT dt2

These two statements prompt the operator to enter
another date and then it is input. Since the variable in
the INPUT statement is of type DATE, then should the user
enter a value that is not a DATE, IMS asks the operator to
re-enter the value and no error number is generated. An
automatic retry is done if the error is in an INPUT
statement. The error handler is not entered.

50

MODULE error_trap_demo

TEXT a$ OF 25
DATE dt,dt2
INTEGER n
REAL r

SET TRAP TO errortrap
PRINT "Enter a date :";

LABEL date_enter

INPUT a$

dt=DATE(a$)

PRINT "Enter ancther date :";

INPUT dt2

n=INTEGER(dt-dt2)

PRINT "There are "; ABS(n); " days between the two dates.”

PRINT "Enter a number: ";
INPUT r
PRINT ™ divided by ";r;" is ";1/r

OPEN "file1™ AS f1
CLOSE f1

END

LABEL errortrap

PRINT Mt FRROR ##xn
CASE
WHEN ERROR=12 THEN
PRINT "Improper date"
PRINT "Please re-enter"
RESUME AT date enter
ENDWHEN
WHEN ERROR=19 THEN
PRINT "division by zero"
PRINT "resuming execution"
RESUME
ENDWHEN
WHEN ERROR=42 THEN
PRINT "Improper file named in OPEN"

PRINT "Abnormal error"
HELP ERROR
RETRY

ENDCASE

n=INTEGER (dt-dt2)

This is an example of how to take the difference be-
tween dates, useful in situations like ageing. To do this
you subtract the days, use the INTEGER statement to convert
the value to an integer number, and store the result in a
numeric variable,

PRINT “"There are "; ABS(n); " days between the two dates.®
This is a PRINT statement that outputs 3 values.
"There are " and " days between the two dates." are two
values that are output as they look. But a PRINT statement
can output any expression, here it outputs ABS(n). This
stands for absolute value of the variable n. So, for
example, if n were -10 then the PRINT statement will output:

There are 10 days between the two dates.

PRINT “"Enter a number: *;
INPUT r

This will prompt the operator to enter a number, then
INPUT a number from the operator.

PRINT "1 divided by “";r;" is ";1/r

This is another PRINT statement that outputs more than
one value. It outputs "1 divided by " then the value you
entered followed by ™ is " and the value of 1 divided by r
(the / symbol stands for divide). For example, if r were
equal to 2 then the statement outputs:

1 divided by 2 is 0.5

OPEN "filel®™ AS f1
CLOSE f1

These two statements open and close a file called
filel. Notice that the OPEN statement has an AS clause.
The AS clause is optional; if it is present then the file
tag becomes the word after the "AS™. That is why the next
statement is CLOSE fl and not CLOSE filel.

END

END stops execution of the module. If this module had
been called by another module then execution would return
back to that module. The purpose of END here is to avoid
execution of the following error trapper statements, since
they should get executed only if an error happens.

LABEL errortrap

This is the label referred to in the SET TRAP TO state-
ment we saw earlier, This then is the start of the error
trapper. Note the way things are arranged in this module.
The SET TRAP TO statement follows right after the variable

51

MODULE error_trap_demg

TEXT a$ OF 25
DATE dt,dt2
INTEGER n
REAL r

SET TRARP TO errortrap
PRINT "Enter a date :";

LABEL date_enter

INPUT a$

dt=DATE(a$)

PRINT "Enter another date :";

INPUT dt2

n=INTEGER(dt-dt2)

PRINT "There are "; ABS(n); " days between the two dates."”

PRINT "Enter a number: ";
INPUT
PRINT ™ divided by ";r;" is ";1/r

OPEN "filel™ AS f1
CLOSE f1

END

LABEL errortrap

PRINT Mm#st FRROR s#xn
CASE
WHEN ERROR=12 THEN
PRINT "Improper date"
PRINT "Please re-enter"
RESUME AT date_enter
ENDUHEN
WHEN ERROR=19 THEN
PRINT "division by zero"
PRINT "resuming execution"
RESUME
ENDUHEN
WHEN ERROR=42 THEN
PRINT "Improper file named in OPEN"
QUIT
ENDWHEN
PRINT "Abnormal error"
HELP ERROR
RETRY
ENDCASE

declarations, then comes the body of the module, then an END
statement, and then the error trapper.

PRINT "“#*%** ERROR *#*#"
This statement outputs "*** ERROR ***", 3 sign that we
are in the error trapper and an error really did occur.

CASE

This marks the start of the CASE ... ENDCASE construct-
ion. In between the CASE ... ENDCASE statements are several
WHEN ... ENDWHEN statements, each tests for a specific error
condition and then takes appropriate action.

WHEN ERROR=12 THEN

ERROR holds the number of the error which occurred. If
the error number were 12, then the statements between this
WHEN and the next ENDWHEN are executed.

PRINT “"Improper date®
PRINT “"Please re-enter”
RESUME AT date_enter
ENDWHEN

ERROR number 12 means that a TEXT value being converted
to a DATE was not a valid date value. For example, the
operator could have typed in "JU 23,1985" in answer to the
prompt for a date seen earlier. Since this is not a valid
date, "Improper date" and "Please re-enter" are PRINTed.
Then the next error trapping word, RESUME AT is executed.
"RESUME AT date_enter”™ means continue execution at the
statement after the "LABEL date_enter" statement we saw
earlier. This "date_enter" label marks the INPUT statement
for the date, so what happens is that if the operator types
in a faulty date value, he or she can re-enter it (instead
of all execution stopping with an error message). The last
statement, ENDWHEN, marks the end of the previous WHEN
statement.

WHEN ERROR=19 THEN
PRINT “"division by zero *
PRINT "resuming execution"
RESUME
ENDWHEN

These statements are executed if the error number were
19: the division by zero error. This would happen if the
operator entered zero in answer to the prompt to enter a
number. "division by zero" and "resuming execution" are
PRINTed out. Then the next error trapping statement,
RESUME, 1is executed. This statement resumes execution at
the statement right after the error-causing one. So in this
case, execution will continue right after the statement in
which the error occurred. The last statement, ENDWHEN,
marks the end of the previous WHEN statement.

52

MODULE error_trap demo

TEXT a$ OF 25
DATE dt,dt2
INTEGER n
REAL r

SET TRAP TO errortrap
PRINT "Enter a date :";

LABEL date_enter

INPUT a$

dt=DATE(a$)

PRINT "Enter ancther date :";

INPUT dt2

n=INTEGER(dt-dt2)

PRINT "There are "; ABS(n); " days between the two dates."

PRINT "Enter a number: ";
INPUT r
PRINT ™ divided by ";r;" is ";1/r

OPEN "file1™ AS f1
CLOSE f1

END

LABEL errortrap

PRINT "3 FRROR #sn
CASE
WHEN ERROR=12 THEN
PRINT "Improper date"
PRINT "Please re-enter"
RESUME AT date_enter
ENDWHEN
WHEN ERROR=19 THEN
PRINT "division by zero"
PRINT "resuming execution®
RESUME
ENDWHEN
WHEN ERROR=42 THEN
PRINT "Improper file named in OPEN"
QUIT
ENDWHEN
PRINT "Abnormal error"
HELP ERROR
RETRY
ENDCASE

WHEN ERROR=42 THEN
PRINT “Improper file named in OPEN"
QUIT
ENDWHEN

These statements are executed if the error number were
42, which is the "file missing or not a data file"™ error.
This would happen if "filel"™ in the OPEN statement seen pre-
viously were incorrect. In this case "Improper file named
in OPEN" would be output and then the QUIT statement is
executed., QUIT simply ends all execution. It acts like an
END statement except that it will not return to the calling
module. The last statement is ENDWHEN, which marks the end
of the previous WHEN statement.

PRINT “Abnormal error"®
HELP ERROR
RETRY

These statements are inside the CASE ... ENDCASE state-
ments so they are therefore still part of that structure.
They follow all the WHEN ... ENDWHEN statements, so these
statements will be executed only if none of the WHEN condi-
tions is true,. If the error number is not 12 or 19 or 42
then these statements are executed. The first outputs a
message telling the operator that some strange, unaccounted-
for error occurred. The HELP statement prints an explana-
tion of the error. The last statement, RETRY, goes back to
reexecute the error causing line. This can be a dubious ac-
tion because it assumes that the error will eventually go
away. In some cases, like reading a marginal disk, it
might, but in other cases it will never go away.

ENDCASE

This marks the end of the CASE ... ENDCASE structure
started by the previous CASE statement, and it also ends the
error trapper.

One final note about the error trap is that if errors
occur inside the error trap then the module stops execution
and IMS prints out the error number. Also, a SET TRAP OFF
command can be used inside the module body to turn off the
error trap set previously by a SET TRAP TO statement. Then
the error trap will not be executed when an error occurs,
but execution will stop and an error number will be printed
out.

NOTE: GOTO should not be used to continue execution after an

error. Executing a RESUME, RESUME AT or RETRY resets the
ERROR number to zero.

53

LESSON 7

Adding Functions To IMS

Objectives:
To learn about
- adding CALLable functions to your programs
~ parameter passing and global fields
- the EXIT command
-~ multiple modules per file

In this section we will learn about making general-
purpose modules or functions that can be used in many
applications.

Specifically, in this section we will create a module
to calculate the standard deviation of an array of numbers.
Remember the formula for standard deviation is the square
root of the following:

(n - average)2
the sum of the values ==---ceocmmcocoe—-
number of elements in the array

where n is each of the elements of the array, and average is
the average value of the elements of the array.

So we can see that we need the ability to take the
square root of a value, to take the average of the array,
and to square a value. The square root routine is already
part of IMS. We will be creating the average and the square
or power routines ourselves. They will be called by our
variance routine, which is the above formula without the
square root. Finally, our standard deviation module will
call our variance module and take the square root to give
the standard deviation value.

We will do this in a different way from that of pre-
vious lessons. There we had one module per file, meaning
that the module takes more memory than it needs and is taken
out of memory when it has finished execution. This works
well enough in our previous lessons, but in this lesson we
are making a set of usable statistics functions that would
take up too much memory and be too slow if they were each in
a separate file. The answer is "multi-modules", which is
the IMS term for putting several modules in one file.

54

NOTE a function which calculates the standard deviation of
NOTE field array NUMBERS with N elements, and returns the
NOTE answer.

MODULE standard_dev{n)
END SQRT(CALL variance(n))

An important thing to remember when using multi-modules
is that the file name should be the same as the first module
in the file. When IMS searches for a module it will first
check to see if the module has already been loaded and if it
has not, it will try to find a file with that name in the
execution directory. All the modules of a file will be
loaded when a multimodule is 1loaded. If you call a module
which has not been previously loaded and has a name dif-
ferent from the name of the file containing it, it will not
be found. This problem can be avoided in two ways. Use the
SHELL statement to LOAD the file before any of it's modules
are used or CALL the first module of the file and don't END
that module until the other modules in the file are no
longer needed.

In this lesson, the first module will not END until the
other modules in the file are no longer needed. Because of
this, we will not need to LOAD and UNLINK the modules
manually or with the SHELL statement.

The first module is standard_dev. Create a file with
this name with the text editor and enter the lines of text
on the opposite page. An explanation follows:

NOTE a function which calculates the standard deviation of
NOTE field array NUMBERS with N elements, and returns the
NOTE ansver.

This is a comment saying what the module is supposed to
do and what the parameters mean. Notice that a field array
is being used. A file with this array must be previously
OPENed.

MODULE standard_dev(n)

The module's name is standard_dev, with parameter n.
We have seen parameters before, for example ABS(n) has the
parameter n. Parameters can not be arrays, although they
can be array elements. The type of parameter n is the same
as in the calling module.

END SQRT(CALL variance(n))

The standard deviation module is written in one line -
END returns the square root (SQRT) of the value returned by
the variance module.

55

NOTE a function which calculates the variance of field array
NOTE NUMBERS, with N elements, and returns the answer

MODULE variance(n)

INTEGER count
REAL mean,diff,sum,square

mean=CALL average(n)

sum=0

count=1

WHILE count<=n DO
diff=NUMBERS(count)-mean
CALL power(diff,2,square)
sum=sum+square
count=count+1

ENDUHILE

END sum/(n-1)

To the text already in the editor add the statements on
the opposite page. This module will calculate the variance.

NOTE a function which calculates the variance of field array
NOTE NUMBERS, with N elements, and returns the answer

This is a comment telling what the purpose of the
module is, and what the parameters are.

MODULE variance (n)
This names the module as variance, with parameter n.

INTEGER count
REAL mean,diff,sum,square

The count variable keeps track of the number of itera-
tions through the loop. mean is used to store the value
returned by module average, diff stores the value of the
difference between each array element and the average,
square stores the value returned from the module power, and
sum holds the running total of the numerator in the afore-
mentioned standard deviation formula.

mean=CALL average(n)

The average module which we have not yet created is
called in this manner. The average value will be assigned
to variable mean.

sum=0
count=1
The sum and count variables are initialized.

WHILE count<=n DO
This starts the loop, which will execute n times.

@diff=NUMBERS (count) -mean
CALL POWER(diff,2,square)
sum=sum+square

First the difference between the array element and the
mean is stored in diff. Then diff is squared and stored in
square, which is then added to the running total sum. The
lines CALL POWER(diff,2,square) and sum=sum+square could be
written as the single line sum=sum+CALL POWER(4iff,2), but
this would require a different version of the POWER module.
Try implimenting this suggestion.

count=count+1l
count keeps the number of times through the loop.

ENDWHILE
This marks the end of the WHILE loop.

END sum/ (n-1)
The module returns the value of sum divided by n-1.

56

NOTE a function which calculates the average of field array
NOTE NUMBERS, with N elements, and returns the answer

MODULE average(n)

INTEGER count
REAL sum

count=1

sum=0

WHILE count<=n DO
sum=sum+NUMBERS (count)
count=count+1

ENDUHILE

END sum/n

Add to the text in the text editor the statements on
the opposite page. This is the module that calculates the
average.

NOTE a function that calculates the average of field array
NOTE NUMBERS, with N elements, and returns the answer

This is a note telling what the module is supposed to
do, and what the parameters mean.

MODULE average(n)
The module is named average and has parameter n.

INTEGER count
REAL sum

The count variable keeps track of how many times to go
through the WHILE ... ENDWHILE loop. sum is a variable that
keeps a running total of the numbers.

count=1
sum=0
Initialize the variables to their starting values.

WHILE count<=n DO

sum=sum+ NUMBERS (count)

count=count+1l
ENDWHILE

This is the complete WHILE ... ENDWHILE loop. It will

be executed n times (the number of elements in the array),
and adds up the total of the elements in field array
NUMBERS. Notice that NUMBERS is not declared in this
module. It is a field array and field arrays are "global"
to all modules after the file containing the field is
OPENed. This module must be CALLed by a module that OPENs a
file containing a NUMBERS field array, otherwise an error
will occur. Remember that arrays cannot be passed as
parameters, so we are using a field array in this manner.

END sum/n

This is the standard END statement with an expression
following it (the "/" symbol means divide). Any END can be
followed by an expression; this means that the module
"returns" the value of the expression. END acts the same
way as it 4id before; the module will stop execution at this
point and return to the module which called it. The expres-
sion means that this module becomes a value. We can go
PRINT CALL average(n), B= CALL average(n)+l. CALL average
will always return the value of sum/n. In this way we can
avoid using an extra parameter to return the result.

57

NOTE calculates the value of BASE to the integer power of
NOTE EXPONENT and returns the answer in RESULT

MODULE pouer(base,exponent,result)

INTEGER count

count=1

result=1

WHILE count<=exponent DO
result=result*base
count=count+1

ENDWHILE

END

Next is the square or power module. Enter the text on
the opposite page. An explanation of each statement follows
below:

NOTE calculates the value of BASE to the integer power of
NOTE EXPONENT and returns the answer in RESULT

This is a comment defining the action of the module and
what the parameters are to do.

MODULE power (base,exponent,result)

This module has the name power, and three parameters -
base, exponent, and result. Note that they are surrounded
by open and close brackets and they are separated by commas.
The above three parameters mean that the module expects
three values to come into the module when it is called.
These values will be used by the module. It is important to
remember that these values can be changed in the module and
they return as changed values to the calling module. Module
power will calculate the value of base to the power of
exponent, and store that value in result. The calling
module calls POWER with base and exponent values and uses
result as the answer. Non parameter variables used in the
module are local to that module; they have no effect on
variables in any other module. This all means that a
module, like power, can be written so that another module
can CALL it and not worry about it's variables being inad-
vertently changed.

INTEGER count
This is a variable to help count the number of times
through the loop.

count=1
result=1
This initializes the variables to the starting values.

WHILE count<=exponent DO
This starts the loop. It will execute exponent times.

result=result*base
We are calculating the value of base times itself ex-
ponent times and saving the value in result.

count=count+1
count is the number of times through the loop, and is
updated here.

ENDWHILE
This marks the end of the WHILE loop.

END
The end of the module.

58

NOTE this file contains a list of numbers for testing the
NOTE standard deviation module

FILE numbers_data
FIELD REAL numbers(50)

Save the text file, and from the main menu choose op-
tion 5 (compile). Answer the prompt with standard_dev.

It is now time to test our standard deviation
functions. Type in the file descriptor on the opposite
page. This file descriptor will create a file to store the
numbers for our standard deviation module to process.

An explanation of the lines follows:

NOTE this file contains a list of numbers for testing the
NOTE standard deviation module

This is a comment explaining the importance of the
file.

FILE numbers_data
The file will be called "numbers_data".

FIELD REAL numbers(50)

This is a field array of REALs, called NUMBERS. The
parentheses after NUMBERS signify that it is an array, and
the 50 means that there are 50 elements in the array. In
other words, our standard deviation module will be calculat-
ing with up to 50 values.

Go ahead and save the file, then use option 2 to gener-
ate the file.

59

MODULE standard_dev_test
INTEGER cn

OPEN "numbers_data"
cn=1
PRINT "Enter the numbers, one per line: "
WHILE cn<=50 DO

INPUT NUMBERS(cn)

IF NUMBERS(cn)=-9993 THEN

EXIT
ENDIF
cn=cn+1

ENDWHILE

PRINT CALL standard dev(cn-1)
END

Create a text file called standard _dev_test and type in
the statements on the opposite page. This module will input
a range of numbers from the Keyboard and when the ending
number -9999 is entered, it will call our standard deviation
module and print the result. An explanation of the state-
ments follows:

MODULE standard_dev_test
This module is called standard_dev_test.

INTEGER cn
This is an INTEGER variable, called en. 1Its job is to
count how many times we have been through the WHILE loop.

OPEN “"numbers_data"

This opens the file with the number array in it. You
see there is no AS part in this OPEN statement: so
numbers_data becomes the file tag.

cn=1
This initializes the variable to 1.

PRINT "Enter the numbers, one per line: "
This is a prompt to tell the user to start typing in
the numbers.

WHILE cn<= 50 DO

This is a WHILE loop, that will be executed once for
each of the 50 elements in the NUMBERS field array (or when
the EXIT statement is executed below).

INPUT NUMBERS(cn)

This inputs a value from the keyboard into the field
array NUMBERS, in the file numbers_data. NUMBERS stores the
data for our standard deviation module.

IF NUMBERS(cn)= -9999 THEN

EXIT
ENDIP

These statements say that if the value just entered was

equal to -9999 then EXIT the loop. EXIT will cause a jump
out of the WHILE loop to the statement after the ENDWHILE.
Typing -9999 as your final number signifies that data entry
is finished. This ~9999 value is called a sentinel.

cn=cn+l
The cn variable is incremented to keep track of the
number of times we have gone through the WHILE loop.

ENDWHILE
This marks the end of the WHILE loop.

60

MODULE standard_dev_test
INTEGER cn

OPEN "numbers_data"
cn=1
PRINT "Enter the numbers, one per line: "
WHILE cn<=50 00

INPUT NUMBERS(cn)

IF NUMBERS(cn)=-9999 THEN

EXIT

ENDIF

cn=cn+1
ENDWHILE

PRINT CALL standard_dev(cn-1)
END

PRINT CALL standard_dev(cn-1)

This calls our standard_dev module with the value of
cn-1. If standard _dev is not in memory, our library file of
standard deviation functions will be loaded. We are passing
the value of cn-1 as a parameter rather than cn because the
WHILE LOOP actually finishes with c¢cn at one more than we
want. The value returned by standard_dev is printed to show
us the standard deviation of our set of numbers.

END
The end of the module.

Save, compile and execute this module. When the prompt
appears:

Enter the numbers, one per line:

the cursor will be waiting for a list of numbers from you,
Type in any list of numbers, for example:
10.23
14.1
13.34
4.78
6.8332
3.6590
-9999
which will output the number:
4.0249578279365

A side note here is that CALLing modules is always
slower than having subroutines, using GOSUB and RETURN, in-
side the module. FPor small jobs GOSUB and RETURN, (see the
reference manual), are a better choice.

61

I I I I I I I I I I I I I I I I I

Gé% INFORMATION
MANAGEMENT
|A \n

SYSTEM

Cleartbrook Sofware Grousy

CLEARBROOK SOFTWARE GROUP
INFORMATION MANAGEMENT SYSTEM

REFERENRCE MANUAL

Release B
January 1, 1986

Copyright 1985, 1986 Clearbrook Software Group Inc.

TABLE OF CONTENTS

Statement, Function and Keyword Summary

Reference .

Index ..

STATEMENTS, FUNCTIONS and KEYWORDS

AND .

Condition/Relational

NOT . e - 11
OR v v v 4 o o o o« o o o o o o e e+ « « . 90
relationals (<,>,=,<=,>=,<>,BW,CT,SL) 104
XOR ¢ v v v ¢« v ¢ o &« « ¢ o s o e e s & e « & 135
Conversjions
DATE . 4 &+ 4 o o s o o s o o o« s« s s « « « « « 30
INTEGER . 4+ &« « « o « o o o o o« o« o« s o o« « o« « 58
LONG & & ¢ ¢ v 4 ¢ s o o o o o o o« o s o o« o« » 13
REAL . & & ¢ ¢« ¢« 4« o« o o« « o o o« o o« o« « « o« 2100
TEXT & 4 ¢ &« o o o o o o o o o o o o o o o« « o 124
VALUE . . & & ¢ & & o ¢ o & o o s « o o o « « o133

Date related
DATE « o ¢ &+ ¢ o ¢ o o o o o o« o « o o « « « « 30
TIME & & ¢« ¢ o ¢ o o o o o o o o s o o o o o o« 125
TODAY & o ¢ ¢« o ¢ o o o o o o o o « o o « o« o « 126

Error trapping
ERROR + v v v 4 v o o o o o o o s o o o o o @

RESUME & . . & v v v e 4 o o o o o o o o
RESUME AT . . ¢ ¢ ¢ ¢ ¢ o s o o o o o o & &

RETRY &« « &+ ¢ ¢ o o « o o« o s o o o s s o «
SET TRAP . ¢« & & o o ¢ ¢ o« o o o o o o o »

File related
CHD .

38
107
108
109
113

CHECK . . & v & ¢ ¢ & « o & o s 4 s « o & « « . 18
CLEAR . & & & 4 ¢ 4 o o o e « o o « o s o o« o« o 20
CLOSE . & ¢ v ¢« ¢« v o o o & & o o« o & o o « & 24
COPY v v v ¢ 4 v v o o o o s o« « o o o« o« « « « 28
DELETE + & v ¢ ¢ ¢« ¢« o o o « o o o o o « o« « « 31
DUPLICATE . . «¢ + « 4 « & o ¢ o o « o « s o « « 33
EOF e I
FIELD « ¢ ¢ ¢« o « o o o« 2 o o o o o s« « o« o« o« o+ 45
field name 4 i i 4 4 4t e 4 e e 4 . . . 46
FIND« . .+ + . e s e e e e e s 47
file tag . v v ¢ it i e e e e e e e e e e 49
INSERT & ¢ v & v ¢ ¢ & o o ¢« o ¢« o o o o o« « . 57
REY & & v & ¢ & v v v e e 4 e s s e 4 e e e . . 59
key clause . . & v v v v i 4 4 s v e 4 e o . . 60
LINK . . v ¢ & ¢ v 4 s o o ¢« « o e o o« o« o« + . 68
LIST ¢« ¢ ¢« v o o o o o s o o s o s o o« o« « « « 170
MARK & & v v ¢ ¢« v ¢ ¢ v o 4 s 4 4 o « o o« o 4 15
MARKED . . . & ¢ ¢ v ¢ 4 o o & o« o o« o o« o « . 16
OPEN . e e e e s s e e 4 s e e s s e e« « o . 87

range ., .
RECORD .
REINDEX
sCaN . .,
UNLINK .
UNMARK
UPDATE
USE . . .

Input related
ENTER . .
ESCAPE
GETKEY
INPUT

KEY PRESSED

MASK . .
SET .

isc neou
arrays
constants
data types
EXECUTE
expression

identifiers

LET . . .
NOTE . .

.

operators (+,

SET .
SHELL

Numeric functionsg

ABS . .

w
o]
oo
jal

TRUNCATE
VALUE .

s s o s s e * @

« o o & s e

a e ¢ o & & & = e

¢« e
. .
. .
.
.
.
.
.
. e
.
.
.
.
.

/%)

e o » s e & e s s e »

« & & & s e e e

a6 s e e e« s + s =

o » e & s & e

“ e s e e

e & s & o & s s a o

« s & a4 s+ e

e s a o s s e *» e s »

97
101
103
112

. 129

130
131
132

113
117

58
64
73
80
81
83
100
111
119
121
122
128
133

HANMONLMOORN~NOT M
NANNMOMAORSAN AN
~—
2z
Gl . oY, e ofX o
Ena @ o =
Tz <) @ » om ¢
oOHU <« = L3
B> A oD L B
< zZm =
RMRLT E E+ o o
o -V S I Tl B o 5
EEESELNCSGITM
LLLIJEIOMARE
VOOUAMEA A E MM E

Output re

..
o m
0
.o
J
- Q
Z
.
. 2
%]
E
)
Z
=]
2z
=]
om
=

ol »

< .

S

e <

o J U

4

o

~

Ay

CHAIN
END .

RETURN

EXIT

GOSUB
GOTO
IF

ELSE ...

ENDIF

ENDLOOP . .

LABEL

LOOP

MODULE
QUIT

REDO

REPEAT ... UNTIL
WHILE ENDWHILE

unctio

CAPS

TEX

CHRS
LEFTS$

’]

LENGTH

LIBRARYS

MASK

MAX

MIDS$
MIN .

PADCENTERS
PADRIGHTS

RIGHTS

.

.

SOUNDS$

SUBSTR
TEXT
TIME
TRIMS

VALUE

Blank

USAGE:
ABS(n)

where n is any numeric expression.

ABS is a function that returns a number and may only be used
in a numeric expression (see EXPRESSION).

PURPOSE AND OPERATION:

To return the absolute value of a number or a numeric
expression, If n is negative then ABS(n) returns the posi-
tive value of n, if n is positive or zero then ABS(n)
returns n. ABS is useful for taking the difference of two
numbers. A subtraction may return a negative value, but ABS
will always return a positive value -- the "distance" be-
tween the two numbers.

EXAMPLE:
a=-6
PRINT ABS(a)
PRINT ABS(4)
PRINT ABS(a-3)

will output:
6
4
9

USAGE:
conditionl AND condition2

where conditionl and condition2 are both any expressions
that evailuate to true or false. Examples of conditional ex-
pressions are amount<total and balance>deductions, which all
have relationals like <, >, =, <=, >=, CT, etc, in them (see
RELATIONALS) .

AND may only be used between two conditions to make up one
larger condition, and therefore can only be used in places
where a condition is allowed, -- in range specifications as
well as in IF, WHILE, and UNTIL statements.

PURPOSE AND OPERATION:

To test for cases when both the first condition gnd the
second condition are true. AND returns true if both condi-
tions are true; if neither is true or only one is true then
AND returns false. ANDs can be used with ORs, NOTs, & XORs
to build large conditions made up of several smaller
conditions.

EXAMPLE:
IF amount>net AND amount<gross THEN
PRINT "amount is in range"
ELSE
PRINT "amount is out of range”
ENDIF

If amount is greater than net and amount is less than gross
then it will output:
amount is in range
and if either condition is false then
amount is out of range
is PRINTed out.

arrays

USAGE:
TEXT identifier (dim list) [OF [LENGTH] number]
INTEGER identifier (dim list)
LONG INTEGER identifier (dim list)
DATE identifier (dim list)
REAL identifier (dim list)

where dim list is a list of numbers, each one separated by a
comma.

Also note that each of these declarations can be preceded by
FIELD in a file descriptor, thus becoming field arrays.

PURPOSE AND OPERATION:

To allow for easier management of related items. An
array is simply a collection of similar data items; the en-
tire collection is called the array, and an individual item
is called an element. Each element is referenced by the
index, which is a number in the range of the array. An ar-
ray may have more than one dimension, a one-dimensional ar-
ray would be a list, a two-dimensional array would be a
table, a three-dimensional array would be a table with
another parameter such as time, etc., For example:

TEXT$ series_no(l12) of 20
would be an array or 1list of 12 series_no elements,
series_no(l), series_no(2), series_no(3), ... series_no(l2);
each element is a TEXT value of 20 characters. Another
example:

INTEGER stats(5,20)
would be an array or table of 5 rows with 20 columns; a to-
tal of 5x20 = 100 elements altogether. The elements are
stats(1l,1), stats(l,2), stats(1,3), ..., stats(l,20),
stats(2,1), stats(2,2), stats (2,3), ..., stats(2,20),
stats(3,1), stats(3,2), and so on up to stats(5,20).

EXAMPLE:
INTEGER house_numbers(200)
TEXT response$(23) of 30
REAL pay_rates(10)
PRINT house_numbers(2)
PRINT pay_rates(5)

declares 3 arrays: an INTEGER array of 200 house numbers, a
TEXT array of 23 responses, each of 30 characters, and a
REAL array of 10 pay rates. Then it will output the second
house number and the fifth pay rate.

ASCII

USAGE:
ASCII(S)

where $ is any TEXT expression.

ASCII is a function that returns a number and may only be
used in a numeric expression (see EXPRESSION).

PUORPOSE AND OPERATION:

To return the ASCII value of the first character in §
(see the ASCII table in the appendix). ASCII has a variety
of miscellaneous uses; it is useful when text values are un-
certain and may contain control codes, strange characters,
etc.

EXAMPLE:
a$="An apple for your thoughts."
print ASCII(as$)

will output:
65
which is the ASCII value of "A".

CALL

USAGE:
CALL modulename (list of parameters)
or
CALL modulename

where list of parameters is any number of expressions consi-
sting of variables, TEXT values, and numbers - each se-
parated by a comma.

CALL may also be used in an expression in which case it has
the value of the END expression in the called module.

LET a = CALL ...

PURPOSE AND OPERATION:

To call another module. CALL is followed by a module's
name and then an optional list of parameters. If a calling
parameter is a variable or field name, any change to that
parameter in the called program will affect the variable or
fieid in the calling program.

For example, modulel could have the following
statements:

a=1

b=a+56

c=3

CALL module2(a,b,c+0)
There are three parameters in this CALL statement, a with a
value of 1, b with a value of 57, and c+0 with a value of 3.
Now, module2 would also have to be declared with 3
parameters, for example:

MODULE module2(first,second, third)
because it is being CALLed with three parameters. Note that
parameter first gets the value of a, second gets the value
of b, and third gets the value of c+0. The order of the
parameters in the CALL and MODULE declarations is very
important. If the following statements appeared in module2:

first=first+l

second=second-1

third=0

END
a would have a value of 1 before the CALL statement, and a
value of 2 after. b would have a value of 57 before and 56
after. ¢ will remain the same because it was passed as part
of an expression.

CALL is very useful when you have a module that does
one particular job which can be used by other modules. This

makes for more maintainable and easier tc understand
programs. It is important to remember that the called
module can only change those variables in the calling module
which are used in the parameter list. Finally, IMS fully
supports recursion, ie., a module can call itself,

EXAMPLE:

1. MODULE caller
CALL submod
PRINT "in caller™
CALL submod
END

MODULE submod
PRINT "in submod”
END

submod will output:
in submod
in caller
in submod

2. MODULE caller
INTEGER a
TEXT a$,b$,c$ of 255

a=5

a$="hello there"
PRINT "in caller"

CALL submod(a,as$,30+3)
PRINT "back in caller"
PRINT a

END

MODULE submod(first,seconds$,third)
INTEGER a

PRINT "in submod"”

PRINT first,second$,third
first=first+l

a=10

END

will output:
in caller
in submod
5 hello there 33
back in caller
6

10

Module CALLER calls module SUBMOD with parameters a, a$, and
30+3. These three values come into SUBMOD and are assigned
to first, second$, and third. Note that these three are not
declared in module SUBMOD. Also note that variable first
changes value in SUBMOD. Then when SUBMOD is finished it
returns the values of first, second$, and third back to
module CALLER's parameter list - a, a$, and 30+3. That is
why the value of a has changed from 5 to 6. Finally, note
that SUBMOD has a variable called a but the use of a has no
effect on the variable a in module CALLER. Only the
parameters can return with changed values.

3. MODULE current_date
END "The current date is: "+today

MODULE caller
PRINT CALL current_date

Here module CURRENT_DATE has an END statement followed by an
expression. This means that CURRENT_DATE becomes a function
which can be used in any expression. Module CALLER PRINTs
out the value that CURRENT_DATE returns, which would be
something similar to:

The current date is: June 23,1985

11

CAPS

USAGE:
CAPS ($)

where $ is any TEXT expression.

CAP$ is a function that returns a TEXT value and may only be
used in a TEXT expression (see EXPRESSION).

PURPOSE AND OPERATION:

To return a TEXT value with all lower case letters con-
verted to upper case. CAPS is useful for handling text
which may be a mixture of lower and upper case, but which
should be seen as equivalent.

EXAMPLE:
namel$="John Doe"
name2$="JOHN DOE"
IF CAPS$(namel$)=CAPS$(name2$) THEN
PRINT "SAME NAME"
ENDIF

will output:
SAME NAME

CASE ... WHEN ... ENDWHEN ... ENDCASE

USAGE:
CASE
WHEN condition THEN
ENDWHEN

o5 e

ENDCASE

There may be as many WHEN ... ENDWHEN statements within the
CASE ... ENDCASE as necessary.

PURPOSE AND OPERATION:

To make multi-way branches simpler. CASE ... ENDCASE
marks the start and end of the branches, and multiple WHEN
... ENDWHENs define each individual branch. WHEN is fol-
lowed by condition and THEN. Condition is any expression
that evaluates to true or false. Examples are amount<total
and balance>deductions which all have relationals like <, >,
=, <=, >=, CT, etc. in them (see RELATIONALS). Statements
between the CASE and the first WHEN are always executed,
only one WHEN ... ENDWHEN is executed (the first true
condition), and if no condition is true then the statements
between the last ENDWHEN up to ENDCASE are executed. CASE
.+. ENDCASE are therefore handy for testing ranges; situa-
tions where low, mid, and high ranges are different and
must be handled separately.

EXAMPLE:
a=45
WHILE a<=105 DO
CASE
PRINT a; " ";
WHEN a<50 THEN
PRINT “fail"
ENDWHEN
PRINT "You passed!! ";
WHEN a<65 THEN
PRINT "“"pass"
ENDWHEN
WHEN a<80 THEN
PRINT "second class"
ENDWHEN
WHEN a<=100 THEN

13

PRINT "first class"
ENDWHEN
PRINT "someone is cheating!"”
ENDCASE
a=a+5s
ENDWHILE

will output:

45 fail

50 You passed!
55 You passed!!
60 You passed!!
65 You passed!!
70 You passed!!
75 You passed!
80 You passed!
85 You passed!
90 You passed!! first class

95 You passed!! first class

100 You passed!! first class

105 You passed!! someone is cheating!

pass
pass
pass
second class
second class
second class
first class
first class

The WHILE loop increments the integer a by 5 from 45 to
105. 1In each iteration of the loop it executes the CASE ...
ENDCASE statement, prints the value of a, and then prints a
message based on the value of a., If the value is 50 or
greater then the following words are PRINTed on the screen:
You passed!!
Note that when a is 105, none of the WHEN conditions is
true, so
someone is cheating!
is PRINTed out.

14

CHAIN

USAGE:
CHAIN modulename (list of parameters)
or
CHAIN modulename

where modulename is the name of the program module and list
of parameters is any number of expressions, consisting of
variables, TEXT values, and numbers, -- the individual
parameters separated by commas.

PURPOSE AND OPERATION:

To GOTO another module, taking the current module out
of memory and starting execution at the beginning of the
called module. Unlike CALL, CHAIN does pot return to the
calling module. CHAIN is useful in cases where the memory
used by all the modules exceeds the memory available. It
allows you to separate the problem into different modules,
and then have a minimum number of modules in memory at any
one time,

EXAMPLE:
MODULE menu
INTEGER choice
PRINT "1. Enter transactions"
PRINT "2. Print transactions"
PRINT "3. Post transactions"
PRINT "Enter number of your choice: ";
INPUT choice
CALL prog(choice)

[another filel

MODULE prog (selection)
CASE
WHEN selection =1 THEN
CHAIN enter_transactions
ENDWHEN
WHEN selection =2 THEN
CHAIN print_transactions
ENDWHEN
WHEN selection =3 THEN
CHAIN post_transactions

15

This

ENDWHEN

ENDCASE

series of modules forms a skeleton for a data process-

ing job. Module MENU prints out a list of choices for the
user to select, the user selects one and module PROG is
CALLed. PROG does some initialization work, and then CHAINs
to the various modules that do the individual tasks, PROG

will
come
will
Note
this
when

16

then disappear from memory, and the CHAINed module will
into memory. When that module is finished, execution
go back to MENU, just after the place PROG was called.
that MENU could call the individual tasks directly, but
way the initialization work of PROG is not in memory
it is not needed.

USAGE:
CHD pathlist

where pathlist is a TEXT expression.

PURPOSE AND OPERATION:

To change the working directory. The working directory
is where new files are stored and files are expected to be.
This action can also be done from the main menu.

EXAMPLE:
CHD "/d0/accounts"®
OPEN FILE "Smith"
CLOSE Smith
CHD "“/d0/data"
OPEN FILE "ytd_totals"”

CLOSE ytd_totals
This will open and close the file called Smith in the

/d0/accounts directory, then it will open and close the file
called ytd_totals in the /d0/data directory.

17

CHECK

USAGE:
CHECK file tag key clause

where file tag and key clause are optional and refer to an
existing key in an already OPENed file (see KEY CLAUSE).

PURPOSE AND OPERATION:

To check the integrity of a file. CHECK will output a
report stating whether the file is GOOD or BAD (needing a
REINDEX). CHECK is useful when the file is suspect; perhaps
the modules working with it are reporting incorrect data.

EXAMPLE:
NOTE "mail_list®" has fields NAME and ADDRESS
NOTE it's key is called NAME
OPEN "mail_list" as MAIL
CHECK

would output something like:

Checking deleted record chain of MAIL~GOOD
Index NAME-GOOD

18

CHRS

USAGE:
CHRS$ (n)

where n is any numeric expression that evaluates to a value
of 0 to 255,

CHRS is a function that returns a TEXT value and may only be
used in a TEXT expression (see EXPRESSION).

PURPOSE AND OPERATION:

To return the character that the ASCII value of n rep-
resents (see ASCII table in appendix). CHRS is useful in
miscellaneous situations including PRINTing control codes to
screens and printers.

EXAMPLE:
a=72
PRINT CHRS$(a)

will output:

H
which is the ASCII character value for 72.

19

CLEAR

USAGE:
CLEAR file tag key clause

wvhere file tag and key clause are optional and refer to an
existing key in an already OPENed file.

PURPOSE AND OPERATION:

To clear a file and its indexes. CLEAR forgets all
data in the stated file, (or current file if none is
stated). The file structure remains intact.

EXAMPLE:
OPEN "temp_data" AS TEMP
CLEAR FILE TEMP

20

CLEAR FORM

USAGE:
CLEAR FORM

PURPOSE AND OPERATION:

To clear the fields present on the form, both on the
screen and in the current record. CLEAR FORM is useful in
editing a file using a screen form, and can only be used
when a screen form is in effect (see the SET FORM TO
statement).

EXAMPLE:
SET FORM TO “"maillist™
ENTER name
ENTER address
PRINT "Next record ? (¥/N): “;
INPUT response$
IF response$="Y" THEN
CLEAR FORM
ENDIF

21

CLEAR LINE

USAGE:
CLEAR LINE

PURPOSE AND OPERATION:

To clear all the text on the current line of the
screen. CLEAR LINE is useful when printing out a single-~line
error message, prompt, etc., and the line should be later
cleared from the screen.

EXAMPLE:
PRINT "ERROR: INVALID DATA (press any key)";
AS$=GETKEY
CLEAR LINE

This will output to the screen: ‘

ERROR: INVALID DATA (press any key)
The module will wait until a key is pressed before continu-
ing execution. Then it will blank out the error message line
from the screen.

22

CLEAR SCREEN

USAGE:
CLEAR SCREEN

PORPOSE ANRD OPERATION:
To clear the screen. CLEAR SCREEN comes in handy in
displaying menus, reports, etc,

EXAMPLE:
CLEAR SCREEN
PRINT
PRINT "MENU FOR DATA PROCESSING "

This will clear the screen before the menu is PRINTed on
screen.

23

CLOSE

USAGE:
CLOSE file tag
CLOSE
CLOSE ALL

where file tag is the tag of a previously OPENed file.

PURPOSE AND OPERATION:

To close a file. CLOSE indicates that you no longer
need information from the file. All files which are OPENed
must be later CLOSEd to ensure that data is written to the
file (normally when a program quits, files are closed
automatically). If file tag is not specified then the cur-
rent file is closed. If ALL is specified then all OPENed
files are closed.

EXAMPLE:
OPEN "vendor_list"™ as VENDORS
CLOSE FILE VENDORS

will OPEN and CLOSE file vendor_list.

24

constant

USAGE:
TEXT constant "t
or 't!
INTEGER constant d
REAL constant d.d

or d.
or d.dEe
DATE constant "date"

where t is any text, d is a series of digits and e is an
integer number between -64 and 63.

PURPOSE AND OPERATION:

To provide constants in a module. Constants are simply
values that are written out explicitly. TEXT constants are
enclosed by double or single quotes, INTEGER constants are
numbers with no decimal point or exponent and REAL constants
are numbers with a decimal point or exponent. Therefore, 7.
/ 4. are two REALs that return the REAL amount 1.75, while 7
/ 4 are two INTEGERs that return the INTEGER amount 1 (See
OPERATORS for a discussion on REAL versus INTEGER division).

EXANPLE:
PRINT "this 'is' text"
PRINT 'and "more™ text'
PRINT 7/4
PRINT 7./4.

will output:
this 'is' text
and "more"™ text
1
1.75

25

cory

USAGE:
COPY file tagl key clause TO file tag2 range
or
COPY STRUCTURE OF file tagl key clause TO filename

where file tagl, key clause and range are optional and refer
to an existing key in an already opened file and range
refers to the range specification (see RANGE and KEY
CLAUSE). file tag2 is the tag of an open file and filename
is a text expression naming the file to which the structure
should be copied.

PURPOSE AND OPERATION:

To copy a range of records from one file to another,
COPY will go through the specified file by the specified
key, (or through the current file and key if none is
specified), and look for each record that matches the range
specification., When such a record is found, the fields with
the same name in both of the files are copied to the "TO
file", If range is not specified then all records are
copiea. No checks are made to see if the records already
exist in the "TO file®; in that case multiple copies of the
record will appear. Assignments are allowed to fields in
the range specification; they will take effect on fields in
the "TO file".

COPY STRUCTURE is used to create a new file with the
same structure. If the file exists, COPY STRUCTURE will
first delete all data in the file, then copy the structure
as betore.

EXAMPLE:
NOTE "mail_list2" has fields NAME, ADDRESS1,
NOTE ADDRESS2, PHONE, ZIP, and CURRDATE
NOTE with NAME as a key

OPEN "mail_list2"™ AS MAILOLD

COPY STRUCTURE OF FILE MAILOLD TO
"MAIL_LIST2BACKUP"

OPEN "mail_list2backup®™ as MAILNEW

COPY FILE MAILOLD KEY NAME TO FILE MAILNEW ALL FOR
ADDRESS2 <> "Des Moines, Iowa" PRINT NAME LET
CURRDATE=TODAY

CLOSE FILE MAILNEW

CLOSE FILE MAILOLD

26

will copy all records from file mail_list2 to mail_-
list2backup, (except for those with address

"Des Moines,
Iowa"), giving a list of the names copied, and changing the
CURRDATE tield to today's date in mail_list2backup.

27

data

types

USAGE:

TEXT identifier [OF [LENGTH] number]
INTEGER identifier

LONG [INTEGER] identifier

REAL identifier

DATE identifier

PURPOSE AND OPERATION:

is.

To express what kind of value the identifier variable
The choices are:

NONNUMERI YPE

TEXT

DATE

maximum declarable length = 32767

This is a sequence of characters. The characters can
be digits, letters, control codes, punctuation, etc.,
and they have a maximum length of 32767 characters.
TEXT values are pnot numbers; they cannot be added,
subtracted, or tested as numbers. See VALUE for the
function to convert a TEXT value into a number. TEXT
is useful for storing names, addresses, alphabetic
series codes, etc. The OF number part states the maxi-
mum number of characters that the TEXT variable can
hold. The default maximum length is 40 characters.

AD January 1,1 to (about) AD 5000
This is a date that cannot start earlier than January
1,1. DATE is useful for all situations where time is
important: on invoices, aging periods, payroll periods,
etc. DATE can be formatted in many different ways, see
MASK.

NOTE: Because of changes to the calendar over the
years, very old dates are not accurate (current rules
are used).

NUMERIC [YPE
INTEGER -32768 to 32767

28

This is a number in the range -32768 to 32767. No
decimal places are allowed. INTEGER is useful for
storing the number of something - employees, aging
days, items in stock, etc. The value has a maximum of
32767; going higher causes an error. INTEGER has the
advantage over LONG INTEGER of needing only half the
memory or disk space,

LONG INTEGER or LONG ~2147483648 to 2147483647
This is a whole number in the range -2147483468 to
2147483647, LONG INTEGER is useful for situations
where the maximum range on an INTEGER would be too low,
Examples are: number of widgets produced 1last year,
number of records in the file, number of users in the
area, etc.

REAL ~9.9999999999999E+63 to 9.9999999999999E+63
(the exponent has a range of -64 to +63)
This is a number that allows decimal places. Dollars
and cents, fractions, percentages, etc., are all ex~
amples of numbers which require the REAL data type.
REAL also allows an exponent, to express the number in
"scientific notation™. For example:
12.34E+10

is short for 12.34 x 1010 (ten raised to the power 10),
which is equal to 123400000000, REALs have up to 14
decimal places; the 14th digit is rounded up from the
15th.

EXAMPLE:
TEXT a$ OF 80
TEXT RESPONSES$ OF LENGTH 80
LONG number_of_records
INTEGER number_of_employees
REAL balance,cost
DATE dt

29

DATE

USAGE:
DATE (expression)

DATE is a function that returns a date and may only be used
in a DATE type expression (see EXPRESSION).

PURPOSE AND OPERATION:
To convert an expression into a date value.

EXAMPLE:
date dt
integer n
SET DATE TO "Y/n/4d"
NOTE no DATE function needed here
dt="June 23,1985"

PRINT dt

PRINT dt+7

PRINT dt-7

n=DATE("Sept 1,1985")-dt
PRINT n

will output:
1985/6/23
1985/6/30
1985/6/16
70

30

DELETE

USAGE:
DELETE file tag key clause range

where file tag, key clause and range are all optional and
refer to an existing key in an already OPENed file and range
is a range specification (see RANGE and KEY CLAUSE).

PURPOSE AND OPERATION:

To delete a range of records. DELETE will go through
the specified file by the specified key (or through the cur-
rent file and key if none is specified), deleting each
record that matches the range specifications. If range is
not specified then only the current record is DELETEd.

EXAMPLE:
NOTE file "salesmen_list" has field NAME, SALES
OPEN "salesmen_list" AS SMAN
PRINT "Deleting useless salesmen"
DELETE ALL FOR SALES <100.00 PRINT NAME

will output:

) Deleting useless salesmen

and then go through the entire salesmen_list file, deleting
all records with SALES less than 100.00 and printing out the
names,

31

DISPLAY

USAGE:
DISPLAY field name
or
DISPLAY field name MASK $

where field name is the name of a field and $ is a TEXT
value giving a MASK specification (see MASK).

PURPOSE AND OPERATION:

To show the contents of a field on the form. The SET
FORM TO commands must have been previously used to specify
which form to use. The DISPLAY field name command will show
the contents of the named field in the current record. If
no MASK value is specified then the mask used is the one
specified in the file creation process for that field.

EXAMPLE:
OPEN "mail_list"
SET FORM TO "mail_listform"
DISPLAY NAME
DISPLAY ADDRESS1
DISPLAY ADDRESS2
DISPLAY CODE MASK "L#L-$#L§"

will open the mail list rile, show the form on screen, and
display the values of the NAME, ADDRESS1, ADDRESS2 fields on
the form using the masks given in the file descriptor to
create the tile. The CODE field will be displayed with the
MASK specified.

32

DUPLICATE

USAGE:

DUPLICATE (expression)

PURPOSE AND OPERATION

To return TRUE
key of the current

if expression is found in the current
file. DUPLICATE is a function that

returns a number and may only be used in a numeric or condi-
tional expression (see EXPRESSION).

EXAMPLE:

OPEN "maillist”
USE Key name
PRINT "NAME:";

INPUT name

IF DUPLICATE(name) THEN
PRINT "That name already exists."

ELSE PRINT
INPUT
PRINT
INPUT
PRINT
INPUT

INSERT

ENDIF

“ADDRESS:";
address
"CITY:*®;
city
"COUNTRY:";
country

33

EJECT PAGE

USAGE:
EJECT PAGE

PURPOSE AND OPERATION:

To start a new page on the printer. Specifically,
EJECT PAGE will send a form feed character to the alterna-
tive print path, which is the path named in the SET PRINT TO
statement. This will cause the printer or alternative print
path file to move the paper to the start of a new page.

If a footer trap has been SET, the footer will be
printed at the bottom of the page.

EXAMPLE:
SET PRINT TO "/P"
EJECT PAGE
PRINT "Here is the report”

This will set output to go to the /P device, (the printer),

cause a new page to be started on the printer, and type
Here is the report

on the printer.

34

USAGE:
END
or
END expression

PURPOSE AND OPERATION:

To end the execution of the current module. END will
stop execution of the current module, and return to the
calling module. If no module called the current one, you
return to the process which invoked IMS. This makes END
different from QUIT, because QUIT never returns to the call-
ing module.

expression can be any kind of expression, and specifies
that the module return a value to the calling module. In
effect, the called module becomes a function returning a
value that can be PRINTed out, used in a range
specification, assigned to a variable, etc. If no value
follows END, 0 is defaulted.

EXAMPLE:
1. INPUT responses$
IF response$= "Y" THEN
CALL report
ELSE
END
ENDIF

which will input response$ and call module REPORT if

response$ is Y, otherwise it will terminate execution of the
module.

2, MODULE full_date
END today+" "+time

MODULE calling
PRINT CALL full_date

will output:
June 23, 1985 10:23:41

35

ENTER

USAGE: .
ENTER field name

or
ENTER field name MASK §$

where § is a text expression overriding the default mask for
the given tield name.

PURPOSE AND OPERATION:

To enter a value into a field of a form. The file con-
taining the field must be OPEN and the SET FORM TO command
used to specify which form is to be used. The MASK part is
optional; if it is present then the field is entered using
the specified mask. If it is not present then the mask
specified in the tile descriptor is used.

EXAMPLE:
OPEN "mail_list"
SET FORM TO "mail_listform”
ENTER NAME
ENTER ADDRESS1
ENTER ADDRESS2
ENTER CODE MASK "L2L-#L#"

will open the mail list file, display its form on the
screen, and enter values into the NAME, ADDRESS1, and
ADDRESS2 fields using the masks specified in the file
descriptor. Then it will enter a value into the CODE field
using the specified mask.

36

USAGE:
EOF (file tag)

EOF is a function that returns a number and may only be used
in a numeric or conditional expression (see EXPRESSION).

PURPOSE AND OPERATION:

To return a value indicating if the stated file is past
the last record of the file. EOF stands for End Of File,
and it returns a value of 1 if End of File is true, other-
wise it returns a 0. EOF is useful when several files are
LINKed together, and a FIND on one file causes implicit
FINDs in the linked files (See LINK for more details). The
RECORD function can be used in a similar way for the current
file, it is 0 for end of file.

EXAMPLE:
NOTE files "mail_list"™ and "agent_file" both have
NOTE key name
OPEN "mail_list™ AS mail
OPEN "agent_file™ AS agent
LINK FILE agent KEY name TO FILE mail mail.name
FIND FILE mail KEY name EXACT "Roger Moore"
IF EOF (agent) THEN
PRINT "Roger Moore is not an agent."
ENDIF

will open the mail_list and agent_file files, link the agent
file to the mail file, and do a find in the mail file for
"Roger Moore™., This will cause an implicit find in the
agent file (because of the LINK statement). The IF
EOF (agent) THEN statement tests to see if the person's name
was not tound in the agent file, and if so
Roger Moore is not an agent.
is PRINTed out.

37

ERROR

USAGE:
ERROR

ERROR is a function that returns a number and may only be
used in numeric expressions (see EXPRESSION) .,

PURPOSE AND OPERATION:

To return the number of the error. ERROR is typically
used inside an error trapping routine to test which error
occurred and to allow the appropriate action to be taken.
1f no error occurred then ERROR returns 0. See the list un-
der Error numbers in the appendix., RESUME, RESUME AT and
RETRY reset ERROR to 0.

EXAMPLE:
SET TRAP TO trap
PRINT "enter a number: ";
LABEL enternum
INPUT n
PRINT 10/n
END

LABEL trap
IF ERROR=19 THEN
PRINT "ERROR-division by zero"
PRINT "re-enter"
RESUME AT enternum
ELSE
HELP ERROCR
ENDIF

will prompt the user to enter a number. If a zero is en-
tered (causing a division by zero error), then
ERROR-division by zero
re-enter
appears on the screen and the operator can then re-enter the
number. An explanation of the error will appear if it is
not a aivide by zero error.

38

USAGE:
ESCAPE

PURPOSE AND OPERATION:

Return the ASCII value of the key which was used to
complete an ENTER statement. Pressing the RETURN or ENTER
key will return a value of 13, pressing the ESCape key will
return a value of 27.

EXAMPLE:
ENTER name
IF ESCAPE=27 THEN
GOTO done
ENDIF

LABEL done
PRINT "Data entry complete"
END

39

EXECUTE

OSAGE:
EXECUTE (%)

where § is any TEXT value that contains an IMS command.

PURPOSE AND OPERATION:

To execute TEXT as if it were an IMS command., EXECUTE
can not be given TEXT values which are module declarations,
variable declarations or program control statements like
GOTO, GOSUB, CHAIN, END, loops, or error trapping. It can
be given other commands, including file commands, field as-
signments and CALL statements. If the execute statement is
passed a null text value, " then IMS will keep accepting
text as commands until an END statement is typed or the ES-
Cape key is pressed. In this way an interactive mode is
possible from inside an IMS module.

EXAMPLE:

1. EXECUTE ("LIST KEY NAME™)
EXECUTE ("FIND FIRST")
EXECUTE ("PRINT NAME™)
PRINT "Enter a command: ";
INPUT c$§
EXECUTE c¢$§

will iist all the records by their NAME key, then find the
first record and print the field called NAME. (This is as-
suming a file is OPEN and the current file has a key called
NAME, and a field called NAME). Then it will prompt you for
a command and attempt to execute it.

2. PRINT "Enter IMS Commands, type END to stop"
EXECUTE("")

will output:

Enter IMS Commands, type END to stop

IMS:
then EXECUTE the TEXT values entered until the user types
END or presses the ESCape key.

40

EXIT

USAGE:
looptype

EXIT

endlooptype

where looptype is one of LOOP, WHILE, REPEAT and endlooptype
is one of ENDLOOP, ENDWHILE or UNTIL.

PURPOSE AND OPERATION:

To leave a loop. The EXIT statement is useful for
situations in which a certain condition is detected that
should stop execution of the loop. Execution will then con-
tinue on the next statement after the loop. EXIT statements
may only be inside a loop, and there may be as many EXITs as
necessary.

EXAMPLE:

count=1

WHILE count <= maximum DO
IF subtotals(count) = amount THEN

EXIT

ENDIF
count=count+1l

ENDWHILE

These statements will search through the elements of an ar-
ray called subtotals for a match with amount. If found it
will EXIT from the WHILE loop with count pointing to that
element,

41

expression

USAGE:

Any place in the syntax requiring a value, an expres-
sion must appear. The implied data type of a function, or
the more complex data type of the two operands of a binary
operator, yield a value of that type. Expressions are in
fact built up recursively. To find out all the functions
and operators and allowable syntax for expressions, refer to
the syntax summary in the appendix.

PURPOSE AND OPERATION:
To dynamically generate a value. An expression can
fall into any of four groups:

1. Numeric expression

A numeric expression can be simply a number, like
5, or a numeric variable, like n. It can also be
several numbers or numeric variables combined using
operators (see OPERATORS). Examples of this are 1+3,
n/27+33, and n*n+37, Numeric functions 1like
ABS(n+5)+33 and MAX(33+22,ABS(2+5)+33,27) are also
expressions. Note that expressions can be inside
expressions; the MAX function above shows this. To
see how it works, we have to see the intermediate steps
of evaluation:

MAX (33+22,ABS(2+5)+33,27)

equals

MAX(33+22,7+433,27)
equals

MAX(55,40,27)
equals

55

Therefore:

PRINT MAX(33+22,ABS(2+45)+433,27) + 2
would output:

57

In the above examples all the numbers and vari-
ables were assumed to be of type INTEGER, but REALs,
LONGs, and INTEGERs can all be used together in a
numeric expression. The resulting value is of the same
type as the highest used in the expression. The order
of types 1s as follows:

REAL : highest
LONG : second highest
INTEGER : lowest
Thus 1n an expression like 3.*2, the answer is 6.,

42

a REAL (a number containing a period is a REAL con-
stant, see CONSTANT for more details). 3. is a REAL,
while 2 is an INTEGER, so the result is a REAL - the
"higher"™ type. 2%*2 equals 4, since an INTEGER times an
INTEGER returns an INTEGER. 37000/4 egquals 9250, a
LONG, since a LONG - 37000, with an INTEGER - 4, gives
the higher type - LONG.

In cases where the expression returns a type you
don't want, the conversion functions REAL, LONG, and
INTEGER can be used. For example, the expression
INTEGER(3.%*2) would return 6, an integer.

2. DATE expressions

Dates are limited in how they can be used in
expressions., Basically, adding and subtracting numeric
expressions from dates and taking the difference in
dates is supported. When a date is used in a numeric
expression it is treated as a LONG. If a REAL is used
in an expression with a DATE the expression will be
type REAL, otherwise it will be type DATE. This is a
problem in taking the difference in dates, because you
want the number of days between the dates - not a DATE
value returned. The answer is to apply the INTEGER
function on the expression. For example, if dt and dt2
are both date variables then

INTEGER (dt-dt2)

would be the expression for the number of days between
the dates.

A TEXT expression can be assigned to a DATE vari-
able (the TEXT is converted to DATE using the current
SET DATE format).

3. TEXT expressions
A text expression can be a text constant, variable
or function or several constants, variables or func-
tions combined with the + (concatenation) operator. It
can also be the null text value, "", which is 0
characters.
An example is:
LEFT$("Hello there, world!*®,5)
which returns "Hello".
TEXT expressions can also be inside TEXT
expressions:
LEFTS$(LEFT$("Hello there, worldl!",5),2)
equals
LEFT$("Hello",2)
equals
IHeIl

43

4. Boolean expression, condition
This type of expression is merely a form of
numeric expression., As the name implies, it is used to
represent a true or false value. Zero (0) is inter-
preted as FALSE, while any non-zero value is inter-
preted as TRUE., For example:
ABS(2-6)>3 AND 40>=LENGTH("Hello")
is FALSE (0); the steps are:
ABS(2-6)>3 AND 40>=LENGTH("Hello")

equals

~4>3 AND 40>=5
equals

0 AND 1
equals

FALSE AND TRUE
equals

FALSE

EXAMPLE:
INTEGER n

DATE dt,dt2

PRINT MAX(33+22,ABS(2+5)+33,27)
PRINT "Enter a number: ";

INPUT n

PRINT n/7+433

PRINT 2*3,

PRINT INTEGER(2*3.)

dt="June 21,1985"

PRINT dt+7

PRINT "Enter a date: ©;
INPUT dt2
n=ABS(INTEGER(dt-dt2))
PRINT n

will output:

55
then prompt you to enter & number. After a number is
entered, the value of the number divided by 7 plus 33 will
be printed. Then:

6

6

June 28,1985
will be printed followed by a prompt to enter another date.
After a date is entered, the number of days between the in-
put aate and June 21,1985 will be printed.

44

FIELD

USAGE:
FIELD (n)
or
FIELD(S$)

where n is a number greater than zero, and $ is a TEXT ex-~
pression which evaluates to the name of a field.

FIELD is a function that returns the value of a field and
may only be used in an expression (see EXPRESSION).

PURPOSE AND OPERATION:

To return the value of a field. FIELD(n) returns the
value of the nth field, so FIELD(l) would return the value
of the first field. FIELD($) where $ is the name of a
field, returns its value. Therefore if a file is OPEN with
a field name of NAME, PRINT NAME or PRINT FIELD("NAME") will
produce the same result. FIELD should only be used when a
file is currently OPEN. It is useful in situations where
the program asks the operator for the name of a field and
then manipulates the field using the FIELD function.

EXAMPLE:
NOTE file "mail_list"™ has fields NAME, ADDRESS1,
NOTE ADDRESS2, ADDRESS3, and PHONE in that order
CPEN "mail_list"
FIND FIRST
PRINT NAME,ADDRESS1,ADDRESS2,ADDRESS3, PHONE
PRINT FIELD(1l) ,FIELD(2),FIELD(3) ,FIELD(4) ,FIELD(5)
PRINT "Name of a field: ";
INPUT as$
PRINT FIELD(as$)

will OPEN file "mail_list", find the FIRST record in this
file, then PRINT out the five fields. Then it will repeat
the printout of these fields, prompt the user to enter the
name of a field, input the field name, and print the value
of that field.

45

field name

USAGE:
filetag.field
or
.field

or
field

where filetag is the tag of the data file containing the
field and field is the name of the desired field. If the
file tag is missing and the first character of the field
name 1s a period (.), the current file is assumed. If only
the rield name is specified, all open files will be searched
for the field.

PURPOSE AND OPERATION:

To reference the location of a particular field in a
file's data record. This referencing is treated uniformly
with the reterencing of user-declared variables, thus,
specifying a field name will allow its value to be used in
any expression, Additionally, if the reference is on the
left side of an assignment statement, a new value may be as-
signed to 1t,

EXAMPLE:
OPEN "mail_list"
USE FILE mail_list KEY name
SCAN ALL FOR name>"M" print name LET code=""

will, for all people in file mail_list whose name is al-

phabetically greater than "M", print the name of that person
and change their postal code to "".

46

FIND

USAGE:
FIND file tag Kkey clause mod

where file tag and key clause are optional and mod is one of
the tollowing:

APPROX value

EXACT value

FIRST

LAST

NEXT

PREVIOUS

RECORD numeric expression

where value is an optional expression of the same type as
the key. If no value is specified, the key expression is
evaluated using the current field values.

PURPOSE AND OPERATION:

To find a particular record in a file. FIND will look
in the current file if file tag and key clause are not
present, otherwise the stated file and key will be searched.
APPROX indicates an exact match or the next greater key if
there is no exact match, EXACT an exact match, PIRST and
LAST the first and last records, NEXT and PREVIOUS the next
and previous records, and RECORD the record number. If none
of these mods is present then APPROX is assumed, When FIND
NEXT is used after the last record is found, RECORD becomes
equal to zero (see RECORD), EOF (file tag) becomes equal to
cne, and the next FIND NEXT returns the first record of the
file. A corresponding reverse action occurs with FIND
PREVIOQUS.

EXAMPLE:
NOTE NAME is a key in "mail_list"
OPEN "mail_list"™ AS MAIL

FIND Key NAME "John Smith"
PRINT NAME
FIND NEXT
PRINT NAME
FIND LAST
WHILE RECORD<>C DO
PRINT NAME
FIND PREVIOQUS

47

ENDWHILE
NAME="John Smith"
FIND

PRINT NAME

This will do an approximate FIND for "John Smith", PRINT the
NAME, FIND the next record and PRINT the NAME. Then a back-
wards listing of the file is produced. The NAME field is
then assigned the value "John Smith". This value is used
when no expression tollows FIND.

If "mail_list" has five names in it, --"Alice Bettens",
*"Dan Rather", "John Smith", "Larry Jones", "Marvin Peate" --
it will output:

John Smith
Larry Jones
Marvin Peate
Larry Jones
John Smith
Dan Rather
Alice Bettens
John Smith

48

file tag

USAGE:
FILE identifying tag
or
identifying tag

where identifying tag is the opticnal tag the data base was
OPENed under or the file name (without sub-directories or
extension). The first form is used embedded in a statement
which expects other parameters, the second form in statement
or function which requires no other parameters.

PURPOSE AND OPERATION:

In either form, this causes the operation in which the
file tag is used to explicitly reference a particular file.
In most cases, its use is optional, and if it is not used,
the current file will be assumed to be the desired file.
The second form of the file tag is used in such situations
as field names and the EOF function,

When identifying tag is used in one to the FILE state-
ments (not in a function), it changes the current file to
the i1dentified one.

EXAMPLES:
NOTE this shows the use of the first form
OPEN "mail_list"
OPEN "mail_list2"
LIST FILE mail_list ALL
NOTE this shows the use of the second form
LIST FILE mail_list2 NEXT 10 PRINT mail_list2.name

will open mail_list and mail list2. It will then list all

the records in mail_list, and then print the name field for
each of the first ten records in mail_list2.

49

GETKEY

USAGE:
GETKEY

GETKEY is a tunction that returns a TEXT value and may only
be used in TEXT expressions (see EXPRESSION).

PORPOSE ARD OPERATION:

To input a single character from the keyboard., GETKEY
will scan the keyboard until the operator types a character.
It will pot output the character; a PRINT statement will
have to pe used if the operator wishes to see the character
typed. GETKEY is useful in places where the operator is
given several choices, and hitting a single key is the
simplest way to choose one (See KEY PRESSED).

EXAMPLE:
PRINT "7. Second last choice"
PRINT "8, Last choice"
PRINT
PRINT ®"Enter your choice :";
response $=GETKEY
PRINT responses$

will take the character the operator types, store it in
response$, and output it to the screen,

50

GOSUB ... RETURN

USAGE:
GOSUBR label

LAééL label

RETURN

PURPOSE AND OPERATION:

To call a subroutine jipnside the current module. The
specified label must be present in the module. The action
of GOSUB 1is to execute statements after LABEL label until a
RETURN statement is encountered. Execution will then resume
immediately after the GOSUB statement. GOSUB is useful when
a part of the module is used many times.

EXAMPLE:
a=0
GOSUB printit
a=1
GOSUB printit
END

LABEL printit
PRINT "the value of 'a' is ";a
RETURN

will output:

the value of 'a' is 0
the value of 'a' is 1

51

USAGE:
GOTO label
LABEL label
PURPOSE AND OPERATION:

To continue execution at the labeled location in the
current module. GOTO differs from GOSUB in that no return
address 1s saved. Using GOTOs generally makes modules dif-
ficult to understand and should be avoided whenever
possible.

EXAMPLE:

PRINT "at first print"

GOTO third

PRINT "at second print"
LABEL third

PRINT "at third print"

will output:

52

at first print
at third print

HELP

USAGE:
HELP error number
HELP command

PURPOSE AND OPERATION:
To print a message explaining an error or giving advice
on using COMMANDS.

EXAMPLE:
1. IMS:HELP FIND

will explain how to use the FIND command.
2. SET ERROR TRAP TO trap

a = a/0

END

LABEL trap

HELP ERROCR

END

will output:
Divide by zero attempted.

53

identifier

USAGE:

MODULE identifier
REAL identifier
INTEGER identifier
TEXT identifier
DATE identifier
LABEL identifier
FILE identifier
KEY identifier

PURPOSE AND OPERATION:

To identify a module, a variable, a file, a field, or a
label. Identifiers must start with a letter, but may con-
tain letters, digits and underlines. The dollar sign may be
used in variable and field identifiers. Spaces and other
punctuation cannot be used in an identifier. Using dollar
signs at the end of a TEXT variable name is a good way to
differentiate it from a numeric variable. The underline is
best used instead of a space to make the identifier more
readable. Note, reserved words in IMS, like IF, NEXT, PRINT
are not allowed to be identifiers of variables or fields.

The field identifier has some interesting variations.
When a tield is specified with no period in the identifier,
all riles, starting with the current file, may be searched
for the field. 1If the first character of the identifier is
a period, only the current file is searched. When the
period is found inside the identifier, the part of the iden-
tifier petore the period is used to identify the file the
fieid is in and the part after the period is the field name.

EXAMPLE:
REAL n,amount
TEXT NAME$ of 30
INTEGER number_of_employees

LIST PRINT DATA.ACCOUNT
Here n and amount are REAL identifiers, NAME$ a TEXT

identifier, number_of_employees an INTEGER identifier, and
ACCOUNT a field name of file DATA.

54

IF ... ELSE ... ENDIF

USAGE:
IF condition THEN IF condition THEN
e or .o
ELSE ENDIF
ENDIF

PURPOSE AND OPERATION:

To make a test and carry out actions based on the
result of that test. condition is an expression that
returns a true or false indication when evaluated. amount=
total, subtotal > discount, are conditions because they are
either true or false. (Note that a relational sign, =, <,
>, >=, <=, or >, is used - see RELATIONALS). The IF state-
ment evaluates the condition, and if the condition is true,
it executes the statements after the IF up to the ELSE (if
ELSE is present). If the condition is FALSE, and ELSE is
present, the statements after ELSE are evaluated. ENDIF
marks the end of the conditional statements.

EXAMPLE:
1. IF total<0 THEN
PRINT "error: deductions are greater than gross"
ELSE
PRINT total
ENDIF

If total is less than zero it will output:

error: deductions are greater than gross
or if total is greater than or equal to zero it will output
the value of total.

2. IF balance>50000.00 THEN
PRINT "Careful: higher tax bracket!"
ENDIF

If balance is more than fifty thousand this will output:
Careful: higher tax bracket!

but will do nothing if balance is less than or equal to

fifty thousand.

55

INPUT

USAGE:
INPUT identifier list

where identifier list is a list of field or variable iden-
tifier separated with commas.

PURPOSE AND OPERATION:

To input a value into a field or variable. The field or
variable must have been previously declared. If it is a
numeric field or variable and a non-numeric value is
entered, the operator will be asked to re-enter the value.
If a TEXT value is entered that is longer than the variable
size, the extra on the right is ignored. INPUT does not
write anything to the screen, so usually a prompt message is
printed on the screen to tell the operator what to type in.

The input is usually entered from the keyboard, but the
SET statement can be used to enter data from other sources
(see SET INPUT FROM). The ENTER or RETURN key must be
pressed atter the data tor each variable or field is typed
in,

INTEGER num
TEXT in$ OF 20

PRINT "Please enter the number: ";
INPUT num

PRINT "Please enter the name: ";
INPUT ins$

will prompt the operator to enter values into variables num
and in§$.

56

INSERT

USAGE:
INSERT file tag

where file tag is optional and refers to an already OPENed
file.

PURPOSE AND OPERATION:

To add a record to the file. INSERT will add a record
to the current file, (if file tag is not present), or to the
file named in the file tag. Typically the fields of the
record have just had information entered into them by INPUT
or ENTER statements, then INSERT is used to add that record
to the file. 1Indexes are also updated when a record is
INSERTed.

EXAMPLE:
NOTE NAME and ADDRESS are field of "mail_ list"
OPEN "mail_list" as MAIL
PRINT "Enter the name: ";
INPUT NAME
PRINT "Enter the address: ";
INPUT ADDRESS
INSERT

will insert one record into the file "mail_list".

57

INTEGER

USAGE:
INTEGER (e)

where e is any expression which can be converted to a value
in the integer's range (-32768 to 32767).

INTEGER is a function that returns a number and may only be
used in a numeric expression (see EXPRESSION).

PURPOSE AND OPERATION:

To take a value and convert it into an integer. IN-
TEGER will take a value like "12.34" and return 12. No
rounding is done on e. The value of e should not be outside
the range of an INTEGER, otherwise an error will occur.

EXAMPLE:
PRINT INTEGER (-2343.67)
PRINT INTEGER (32.0+45.)
PRINT INTEGER (34.8-23.4)
PRINT INTEGER ("-123")

will output:
-2344

58

KEY

USAGE:
KEY

PURPOSE AND OPERATION:
To return the current key value of the current record,
KEY returns a value of the same type as the current key and

can only be used in an expression.
selected or there is no current file,
If RECORD is currently zero,

value.

EXAMPLE:
MOD

TEX

ULE customer_report

T namekey

REAL total,subtotal

tot

OPE
OPE

LINK FILE transaction KEY name TO FILE customer

FIN
WHI

al=0

N 'transaction'
N 'customer'

If NOKEY is currently
an error will occur.
KEY may have an undefined

customer.name

D FILE customer KEY name FIRST

LE RECORD DO

PRINT name

USE FILE transaction

namekey=KEY

subtotal=0

WHILE RECORD AND namekey=KEY DO
PRINT ,transdate, transamount
subtotal=subtotal+transamount
FIND NEXT

ENDWHILE

PRINT "Total purchases: ";subtotal

total=total+subtotal

FIND FILE customer NEXT

ENDWHILE

PRI
END

NT "Total Sales: ";total

59

key clause

USAGE:
CHECK file tag key clause
CLEAR "
COPY
DELETE
FIND
LINK
LIST
MARK
REINDEX
SCAN
UNMARK
USE

v e

where ... denotes extra parts in the statement.

PURPOSE AND OPERATION:

To specify which key the file command will work on.
The word KEY followed by the name of key explicitly states
which key to use. The name is the same as the key name used
when the file was created. NOKEY is used to indicate
sequential order, ie. record #1, record #2, record #3, etc.
The key clause can be omitted and the current or last used
key will be used instead. If no key has yet been used and
none is specified then the NOKEY key will be assumed.

EXAMPLE:
NOTE "invoice_list™ has fields VENDOR_NUMBER,
NOTE INVOICE_NUM, DATE, AMOUNT with
NOTE key VENDOR_NUMBER
NOTE
OPEN "invoice_list" AS INV
LIST
LIST KEY VENDOR_NUMBER
LIST NOKEY

will list the records in the default/current key order,
which in this case is NOKEY. Then it will be followed by a
list in vendor_number order, and finally by a list in the
order 1n which they were entered.

60

KEY PRESSED

USAGE:
KEY PRESSED

KEY PRESSED is a function that returns a number and may only
be used in numeric expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To test if a key has been pressed on the keyboard and
not read. KEY PRESSED returns 1 if there is a key being
pressed at the keyboard, or 0 if no key is being pressed.
KEY PRESSED is useful when you want to be able to alter an
executing operation. For example, suppose that in a report
module you want to be able to stop printing at any time
during the report. In this case the module could give a
prompt telling you to press any key to suspend execution,
giving you a chance to examine the report, If you want to
know which key was pressed, a GETKEY statement will have to
be used. An important thing to remember is that if KEY
PRESSED is true, meaning a character was pressed, it will
remain true until the character is read by a GETKEY or INPUT
statement,

EXAMPLE:
NOTE file "maillist" has already been OPENed and
NOTE has fields NAME, ADDRESS1, and ADDRESS2
PRINT "Press any key to suspend report generation"”
WHILE NOT EOF(maillist) DO
PRINT NAME
PRINT ADDRESS1
PRINT ADDRESS2
IF KEY PRESSED THEN
a$=GETKEY
PRINT "Press any key to continue operation"”
WHILE KEY PRESSED = 0 DO
ENDWHILE
a$=GETKEY
ENDIF
ENDWHILE

These statements will print three fields from the maillist
file. 1Inside the WHILE ... ENDWHILE loop a test is made to
see if a key was pressed; if so, the module waits until
another key is pressed before continuing execution.

61

LABEL

USAGE:
LABEL labelname

PURPOSE AND OPERATION:

To mark a position in a module. Labels are used by
GOTO, GOSUB, SET TRAP TO, SET HEADER TO, SET FOOTER TO and
RESUME AT statements to indicate the position at which to
continue execution, The label itself is not executed; it is
only a marker.

EXAMPLE:
1. e
LABEL here

The LABEL here statement will have no effect on execution,

2. .o
LABEL here
GOTO here

Now LABEL here is a target tor the GOTO here statement.

62

LEFTS

USAGE:
LEFTS$($,n)

where § is any TEXT expression, and n is any numeric
expression,

LEFT$ is a function that returns a TEXT value and may only
be used in TEXT expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To return the leftmost n characters of $. If the value
of n is greater than the length of $, all of $ is returned.
If the value of n is less than or equal to zero, the null
TEXT value ("") is returned.

EXAMPLE:
a$="this is great!!"
PRINT LEFTS(as$,4)

will output:

this
which is the tour leftmost characters of a$.

63

LENGTH

USAGE:
LENGTH (§)

where $ is any TEXT expression.

LENGTH is a function that returns a number and may only be
used in numeric expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To return the length of a TEXT value. LENGTH will
return a number indicating how many characters are contained
in §. The null TEXT value ("") has length zero.

EXAMPLE:
a$="this is some text"
PRINT LENGTH(a$)
PRINT LENGTH("more text")
PRINT LENGTH({(a$+"more text"™)

will output:
17
9
26

64

LET

USAGE:
LET identifier = expression
or
identifier = expression

where identifier is a field or variable identifier.

PURPOSE AND OPERATION:

To assign the value of expression to an identifier.
identifier is a previously declared variable or a field name
and expression can be any type of expression of the same
type (numeric, text or date) as identifier (See EXPRESSION).
Use of LET is optional.

EXAMPLE:
1. LET amount = 500.00
2, total = amount+(rate*principal)-deductions

65

LIBRARYS

USAGE:
LIBRARYS($)

where $ is any TEXT expression.

LIBRARYS$ is a function that returns a TEXT value and may
only be used in TEXT expressions (see EXPRESSION).

PURPOSE ARD OPERATION:

To return a TEXT value in "library" form. LIBRARYS
will convert all lower case letters to their upper case
equivalents, change all characters which are not letters or
digits to spaces, change multiple spaces to a single space
and remove all leading and trailing spaces.

EXAMPLE:
as=" The Blind .Mice. *_!! -
PRINT "***" ., TBRARYS (a$) ;" ***"

will output:
THE BLIND MICE

66

LINE NUMBER

USAGE:
LINE NUMBER

LINE NUMBER is a function that returns a number and may only
be used in a numeric expression (see EXPRESSION).

PURPOSE AND OPERATION:

To return the current line of the printer page. When
the SET PRINT TO statement is used to set up output to an
alternative device, every PRINT statement to this device
automatically updates this built-in variable. LINE NUMBER
can be useful in reports to see if there is enough room on
the page for a certain part of the report. LINE NUMBER can
not be assigned a value, and is set to 0 when an EJECT PAGE
command is executed or a footer subroutine is executed auto-
matically.

EXAMPLE:
MODULE do_report
IF LINE NUMBER < 40 THEN
GOSUB totals
ENDIF

Here in the module do_report, LINE NUMBER is checked to see
if the current line is less than 40, (ie. there are at least
20 free lines on a 66 line page with 6 line bottom margin),
and if so a subroutine to print out the totals is called,
otherwise it is not called.

67

LINK

USAGE:
LINK file tagl key clause TO file tag2 expression

vhere file tagl and key clause are both optional and refer
to an existing OPEN file and a key in that file.

PURPOSE AND OPERATION:

To link one tile to another, so that changes in access-
ing one file cause corresponding changes to the other. LINK
allows relational as well as network capability; the infor-
mation of several tiles can be "linked"™ together so that the
total information can be easily manipulated. LINK's func-
tion 1s to cause a search in file tagl by key clause for a
match with expression whenever the record in file tag2
changes.

A payroll program is a good example. A file of
employee data would keep information about each employee --
number, name, address, Year to date totals, etc, Another
file would contain the hours worked, each record would con-
sist ot an employee number, the hours worked, pay-rate, etc.
The two files would have to be separate because the data are
different in both, but the payroll program needs information
from each. LINK provides an easy solution, simply LINK the
two employee number fields together and a FIND for the
employee number in one file automatically finds the matching
record in the other file, More than 2 files may be LINKed
together; the only limit is the memory available.

EXAMPLE:
NOTE file "employee_data™ has fields NUMBER,
NOTE ADDRESS, and TOTAL_EARNINGS with key NUMBER
NOTE file “hours™ has fields NUMBER, HOURS
NOTE RATE
OPEN "employee_data™ AS EMPDATA
OPEN "“hours" AS HOURS
LINK FILE EMPDATA KEY NUMBER TO FILE HOURS
HOURS.NUMBER
FIND FILE HOURS FIRST
PRINT "The data in 'hours' file is:"
LIST FILE HOURS CURRENT
PRINT "The data in 'employee_data' file is:"
LIST FILE EMPDATA CURRENT

68

will output:
The data in 'hours' file is:
list the tirst record in the hours file, output
The data in 'employee_data' file is:
and list the record in the employee_list file with the same

NUMBER field as in the hours file record (the current
record) .

69

LIST

USAGE:
LIST file tag key clause range
or
LIST STRUCTURE
or
LIST BASES

where FILE file tag, key clause, and range are all optional
and refer to an existing key in an already opened file and
range is the range specification (see KEY CLAUSE and RANGE) .

PURPOSE AND OPERATION:

To list a range of records. LIST will go through the
stated file by the specified key, (or through the current
file and key if not specified), outputting each record that
matches the range specifications. If range is not specified
then all records are listed. LIST STRUCTURE gives a report
on the structure of the current data file. LIST BASES gives
a report on all the files, with an asterisk,"*", by the cur-
rent tile and key index.

NOTE: if there is a PRINT in the range, only the ex-
pressions following PRINT will print for each record.

EXAMPLE:
NOTE "mail_list2" has fields NAME, ADDRESS],
NOTE ADDRESS2, PHONE, and ZIP
OPEN "mail_list2®™ AS MAIL
LIST ALL FOR ADDRESS2="Mudville"AND LEFTS$(NAME,6) =
"Jones, "
LIST STRUCTURE
PRINT
PRINT
LIST BASES
CLOSE MAIL

will first list all records in file mail_list2 that have
city Mudville and last name Jones, then output a report with
a structure similar to the following:

FIELD NAME TYPE OPTION OFFSET LENGTH

name text 0 1 30
addressl text 0 31 50
address2 text 0 81 50

70

phone text 0 131 10
zip text 0 141 9

The OFFSET column lists how many bytes there are from the
start of the record to the particular field.

followed by the bases:

MAIL
*DATA: Record Length=150
No of Records=264
INDEXES: NAME TYPE LENGTH
*NAME text 30

71

LOCATE

USAGE:
LOCATE row,col

where row and col are numeric expressions corresponding to
the screen row and column, respectively.

PURPOSE AND OPERATION:

To place the screen cursor at specific screen
coordinates. The coordinates range from (1,1) at the upper
left hand corner to (24,80) at the lower right hand corner
of the screen. LOCATE is useful in positioning PRINT mes-
sages at certain locations on the screen.

EXAMPLE:
LOCATE (10,40)
PRINT "ERROR: unknown account number"

will put the cursor on the tenth row and the fortieth
column, and PRINT

ERROR: unknown account number
at that screen location.

72

LONG

USAGE:
LONG (e)

where e is any expression which can be converted to a value
in the range of a LONG INTEGER (-2147483648 to 2147483647).

LONG is a function that returns a numeric value and may only
be used in numeric expressions (see EXPRESSION).

PORPOSE AND OPERATION:

To return the value of e as a LONG. LONG takes the
value of e, whether it is an expression made up of REALSs,
LONGs, INTEGERs or TEXT values and returns a LONG value of
it. LONG will truncate the value given to it, so that if it
receives a value of "12.34", it will return 12. If the value
of e is outside the LONG integer's range, an error occurs.

EXAMPLE:
PRINT LONG(34345.+7564224)
PRINT LONG(-534.23+1023.43)
PRINT LONG("-342.333")

which will output:
7598569
489
-343

73

LOOP ... ENDLOOP

USAGE:
LOOP

LY

ENDLOOP

PURPOSE AND OPERATION:

To make a simple loop. LOOP ... ENDLOOP enclose the
statements that are executed over and over until an EXIT,
QUIT or END statement is executed. Note that there is no
built in condition tor LOOP ... ENDLOOP, making it different
from the REPEAT and UNTIL loops. EXIT, END or QUIT must be
used to leave a loop or you may get what is called an
"infinite Loop".

EXAMPLE:
1. LOoP
PRINT "HELP! I'm trapped in an infinite loop!"
ENDLOOP

will output:
HELP! 1I'm trapped in an infinite loop!
forever.

2. count=1
LOOP
PRINT month(count)
IF count=12 THEN
EXIT
ENDIF
count=count+1l
ENDLOOP

will output 12 values (the elements of the array called
month). Note that if the IF ... EXIT statements were not in
the example the loop would keep printing forever or until an
error occurred,

74

MARK

USAGE:
MARK file tag key clause range

where file tagq, key clause and range are all optional and
refer to a key in an OPEN file and range is the range
specification (see RANGE and KEY CLAUSE).

PURPOSE AND OPERATION:

To mark records for later deletion. MARK will go
through the stated file by the stated key, (or through the
current file and key if not stated), and mark each record
that matches the range specification. If range is not
specified then the current record is marked. The marked

records will act as they did before -- nothing is changed
except that the function MARKED will return a value of 1
(TRUE) when the current record is marked -- until a REINDEX

statement is used to delete all marked records (see REINDEX
and MARKED) or the record is UNMARKED. MARK is useful in
cases where the operator indicates individual records to be
deleted. Deleting them one at a time might be slower than
simply marking them and REINDEXing them later.

EXAMPLE:
NOTE: customer_list has key field NAME
OPEN "customer_list" AS CUST

FIND FILE CUST FIRST
WHILE RECORD <>0 DO
PRINT NAME
PRINT "Delete this one? (Y/N)";
INPUT responses$
IF CAPS$(response$)="Y" THEN
MARK
ENDIF
FIND NEXT
ENDWHILE
REINDEX
which will go through all the records of file customer_list,
print the NAME field of each one, and ask the operator if
the record is to be deleted. 1If the operator enters Y or y
then the record is MARKed.

75

MARKED

USAGE:
MARKED

MARKED is a function that returns a number and may only be
used in numeric expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To return a value indicating if the current record is
MARKED or not. MARKED will return a zero if the record is
not marked, and a one if 1t is. A record which is marked is
simply a record which was included in a previous MARK state-
ment (see MARK). MARKED should only be used when a file is
OPEN.

EXAMPLE:
markcount=0
OPEN "employee_data®™ as EMP

FIND FIRST
WHRILE RECORD<>0 DO
IF MARKED=1 THEN
markcount=markcount+l
ENDIF
FIND NEXT
ENDWHILE
PRINT markcount; "records marked"

will output a number showing how many marked records are in
file employee_data.

76

MASK

USAGE:
e MASK m

where e is any numeric or TEXT expression, and m is a TEXT
expression that contains a valid mask value.

MASK is a function that returns a TEXT value and may only be
used in expressions (see EXPRESSION) and ENTER and DISPLAY
Statements.

POUORPOSE AND OPERATION:

To format a value. MASK will take a TEXT or numeric
value and return a TEXT value in the format specified with
the m mask. See SET DATE TO for the format of a DATE mask.
MASKs may have an initial "start character"”

The start character:

! - must enter a value into this field. A simple car-
riage return will not be accepted.
? - optional field. The user may or may not enter a

value into this field.
If the first character is neither of these then the
field is assumed to be an optional field.

Mask control characters:
- any character is accepted, except for control
codes.

- must enter a digit, 0 ... 9, only. If the field
is of a numeric type then a leading negative sign
is allowed.

1 - letters entered are shown in upper or lower case,
as they were entered. Digits, punctuation, etc.,
are not allowed.

L - letters entered are shown in upper case, even if a
lower case letter was typed, Digits, punctuaticn,
etc., are not allowed.

A - upper case alphanumeric; meaning both digits and
numbers are accepted, with lower case letters
shown in upper case.

a - mixed case alphanumeric; meaning both digits and
numbers are accepted, with letters shown in upper
cr lower case, as they were entered.

\ - force the next character; the next character will
not be seen as a mask control character but rather
as a character to pbe copied in place.

77

. - decimal point, for numeric values this sets the
position of the decimal point in the resulting
formatted TEXT value.

- *"ghost"™ character, this will make the next charac-
ter go in the mask if the preceding character in
the value is not a space or a minus sign, other-
wise a space will appear in the mask.

All other characters are copied into the mask and left
in place.

Also important to know are the default masks. These

are the masks that are used if no mask is specified in the
field descriptor, and they vary according to the type of
variable in use. The default masks are:

78

TEXT - any upper or lower case letters, digits,
punctuation characters, etc., - anything except
control codes (this is the * mask character). The
length of the field will be the same as that
specified in the OP LENGTH.

INTEGER - any digit or a leading negative sign. The
length of the field will be 6 characters.

LONG - any digit or a leading negative sign. The
length of the field will be 11 characters.

REAL - any digits, a sign, decimal point, an E (for
the exponent). The length of the field is 20
characters.

EXAMPLE:

1. 313 MASK "l###"

The exclamation mark specifies a "must enter"™ value,
and the digits specify a 3 digit number. Since a lead-
ing negative sign is allowed in a numeric value, -
those with type INTEGER, LONG, or REAL, values like -32
and -7 would be accepted by the mask. Numeric values
are also right justified when entered (like a
calculator). This will return:
313

2. "4732122" MASK "##i-3##"

No starting 1 or ? character means that this defaults
to an optional value. The mask requires 3 digits and
then 4 digits to be entered; the dash - character is
not one of the mask control characters so it is shown
in place in the value. The dash character does not
need to be typed in. This will return:

473-2122

3. "v2alb4" MASK "L#L-#L#"

The L mask control character specifies that a letter
must be entered, and that letter will be converted to
upper case when entered. This will return:

V2A-1B4
4, "e3d7" MASK "\L-AAAA"
This specifies a backslash character, - \, that will
view the next character - L, as not being a mask con-

trol character. The dash is shown in place in the
value. The AAAA characters specify 4 digits or letters,
the letters shown in upper case. Examples of what
could be returned from this mask are L-2B74, L-4326, L-
AS5D, L-H23K. This mask will return:

L-E3D7

5. 123456.24 MASK "#8%7, #3887, 9887, 488,44
This kind of mask is suitable for printing out large
numbers. The ~ makes the next character print out only
if the previous character is not a space or minus sign.
In this case, there are six digits before the decimal
place, and the mask provides for twelve. If the mask
did not have the “, this would output:

' »123,456.24
We can see that there are spaces in front of the first
two commas, and these are the commas that we don't want
to print out. So the " mask control character becomes
a convenient method of printing a space instead of a
comma in this case. This example would return:

123,456.24

79

USAGE:
MAX(el,e2, ...)

where el, e2, ... is a list of two or more expressions of
the same type (numeric, TEXT or DATE).

MAX is a function that returns a value of the same type as
its arguments (see EXPRESSION).

PURPOSE AND OPERATION:
To return the value of the largest item in a list.
There must be at lLeast two items in the list.

EXAMPLE:

QU
flonn
N L

PRINT MAX(4,b,2*c)

PRINT MAX("apples",“oranges"”)
will output:

6

oranges

80

MFREE

USAGE:

MFREE

MFREE is a

function which returns the amount of memory

available for data.

PURPOSE AND
MFREE
available.
carry out a
expressions

OPERATION:

is useful for checking how much memory is
A program may use it to decide whether it can
certain operation. It should be noted that TEXT

and the DELETE, UPDATE and SCAN statements use

extra memory when they are executing.
If you run out of memory, you can try invoking IMSI
with more memory (for example: IMSI program #8k).

EXAMPLE:

IMS: PRINT MFREE;" bytes free"

is an interactive statement which will print something like
3024 bytes free

81

MID$

USAGE:
MIDS$ ($,nl,n2)

where $ is any TEXT expression, and nl and n2 are any
numeric expressions.

MIDS$ is a function that returns a TEXT value and may only be
used 1n TEXT expressions (see EXPRESSION).

PORPOSE AND OPERATION:

To return a TEXT value of n2 characters from §, start-
ing at the nlth character. If nl is less than or equal to
zero then it is seen as 1, and if nl is greater than the
length ot $ then MIDS$ returns the null TEXT value. If n2 is
zero or less a null TEXT value 1is returned, and if n2 is
greater than the length of § then only $ from the nlth
character is returned.

EXAMPLE:
a$="this is the text"
PRINT MIDS$(a$,6,2)
PRINT MIDS$(as$,9,3)
PRINT MID$(a$,-1,0)
PRINT MIDS$(a$,9,LENGTH(AS))

will output:
is
the

the text

82

MIN

USAGE:
MIN(el,e2, ...)

where el, e2, ... is a list of two or more expressions of
the same type (numeric, TEXT or DATE).

MIN is a function that returns a value of the same type as
its arguments, and may only be used in expressions (see
EXPRESSION) .

PURPOSE AND OPERATION:
To return the value of the smallest item in a 1list.
There must be at least two items in the list.

EXAMPLE:

NT MIN(a,b+c,10-b,2%*a)

4
5
3
I
INT MIN("apples™,"oranges")

a=
b=
c=
PR
PR
will output:

4

apples

83

MODULE

USAGE:
MODULE modulename
or
MODULE modulename (paramlist)

where modulename is the name of the module and paramlist is
a list ot parameter identifiers separated with commas.

PURPOSE AND OPERATION:

To mark the beginning of an IMS program module, giving
it a name and identify the parameters being passed to the
program. Every IMS program must start with the MODULE
statement. The program following MODULE can use the
parameters like user defined variables except that para-
meters inherit their type from the calling module.

EXAMPLE:
MODULE run_hanoi

INTEGER i

PRINT "Number of Disks? ";
INPUT i

PRINT "Moving ";i;"™ disks from A to B"
CALL hanoi(i,"A","B","C")

END

MODULE hanoi(num,from,to,other)

IF num=1 THEN

PRINT from;to;' ';
ELSE
CALL hanoi(num~-l,from,other,to)
PRINT from;to;' ';
CALL hanoi{num-1l,other,to,from)
ENDIF
END

84

NOT

USAGE:
NOT (condition)

where condition is any expression that evaluates to true or
false. Examples are amount<total, balance>deductions, which
all have relationals like <, >, =, <=, >=, CT, etc. in them
(see RELATIONALS).

NOT is only used in places where a condition is allowed --
in IF, WHILE, and UNTIL statements, as well as in range
specifications.

PURPOSE AND OPERATION:

To test for when the condition is not true. If the
condition is false, NOT will return true, if the condition
is true, NOT will return false. NOT can be used with ANDs,
ORs, and XORs, to build up larger conditions made from smal-
ler ones.

EXAMPLE:
IF NOT (seriesno="23A10737") THEN
PRINT "widget B series"”
ELSE
PRINT "widget A series"
ENDIF

will output:
widget B series

if seriesno is not equal to "23A10737", otherwise

widget A series
will be PRINTed out.

85

NOTE

USAGE:
NOTE text

PURPOSE ANRD OPERATION:

To allow for the module writer to document the module's
operations. The NOTE and the tollowing text are all ignored
by IMS. Putting NOTEs in the module will not make it run
faster or better, but are a good idea since they tell the
person reading the module what the statements are supposed
to do. NOTEs clarifying modules, subroutines, and tricky
statements are all good ideas.

EXAMPLE:
NOTE This module gives a report based on the
NOTE vendor maintenance files,
MODULE report

86

OPEN

USAGE:
OPEN "pathlist" AS file tag
or
OPEN "pathlist"

where pathlist is the name of a file on disk, and file tag
is a file identifier.

PURPOSE AND OPERATION:

To open a file, OPEN tells IMS to work with the file
named in pathlist, with the file tag being the name for the
file in the module. If the AS clause is not present then
the filename becomes the file tag. You must OPEN a file
before you can work on it, and it is then referred to by its
file tag. Each file that is OPENed should be CLOSEd when
work on it finishes.

EXAMPLE:
OPEN "/d0/acct_data/vendor_list" AS VENDORS

will open file /d0/acct_data/vendor_list, and then have it
referred to as VENDORS throughout the module's statements.

87

operators

USAGE:
nl op n2
or
tl + t2

where nl and n2 are any numeric expressions, and op is one
of the following operators:

* multiplication

/ division

+ addition

- subtraction

] modulus or remainder, (only for
integers)

and tl1 and t2 are any TEXT expressions:
+ concatenation

PURPOSE AND OPERATION:

To provide calculation power to IMS expressions the
basic four operators (%, /, + and -) are present, as well as
modulus (%). Modulus works only for two integer values and
returns the remainder after the division. This is necessary
because division using integers returns an integer number,
ie, the remainder is lost. For example, 7/4 equals 1
(because 7 and 4 are poth integers) and 7 % 4 equals 3. The
TEXT operator, +, appends the second TEXT expression to the
first. The result is a TEXT value with a length equal to
the Lengths of the 2 TEXT expressions added together.

EXAMPLE:
INTEGER count,number
REAL amount,benefits,rate,deductions
TEXT first$,second$ of 255

amount=500.00
benefits=225.50

rate=0.80
deductions=235.37
count=10

number=2

first$="the first"
seconds=" and the second"”

PRINT (amount+benefits)*rate-deductions

88

PRINT amount/rate
PRINT (count+number) %5
PRINT count/3

PRINT first$+seconds
PRINT second$+firsts$

will output:
345.03
625
2
3
the first and the second
and the secondthefirst

89

OR

USAGE:
conditionl OR condition2

where conditionl & condition2 are both any expression that
evaluates to true or false, Examples are amount<total,
balance>deductions, which all nave relationals like <, >, =,
<=, >=, CT, etc. in them (see RELATIONALS).

OR is only to be used in between two conditions to make up
one larger condition, and therefore can only be used in
places where a condition is allowed -- in IF, WHILE, WHEN
and UNTIL statements, or in a range specification.

PURPOSE AND OPERATION:

To test for cases when conditionl or condition2 is
true, or both are true, In other words, when at Jleast one
of conditionl and condition2 is true. OR returns true in
this case; if neither condition is true then OR returns
false. ORs can be used with AND, NOT, and XORs to build
larger conditions made up of smaller ones.

EXAMPLE:
IF empnumber>maximum OR empnumber<minimum THEN
PRINT "error in empnumber”
ENDIF

if empnumber is greater than maximum oI empnumber is less

than minimum, or if both are true then it will output:
error in empnumber

90

PADCENTERS

USAGE:
PADCENTERS ($,n)

where $ is any TEXT expression, and n is any numeric expres-
sion that has a value of zero or more.

PADCENTERS is a function that returns a TEXT value and may
only be used in TEXT expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To center text. PADCENTERS will take $ and center it
in a TEXT value of length n. If n is larger than the length
of $ then spaces will "pad" the returned text on the left
and right. If n is less than or equal to the length of §
then $ is returned.

EXAMPLE:
a$="This is text."
PRINT "***x".DADCENTERS$ (a$,20) ;"**x"

will output:
fallald This is text. *x%x

91

PADRIGHTS$

USAGE:
PADRIGHTS$($,n)

where $ is any TEXT expression and n is any numeric expres-
sion with a value equal to or greater than zero.

PADRIGHTS is a function that returns a TEXT value and may
only be used in a TEXT expression (see EXPRESSION) .

PURPOSE AND OPERATION:

To return a TEXT value right justified. PADRIGHTS will
return $ right justified in a TEXT value of length n. If n
is less than or equal to the length of $§ then $ is returned.
If n is larger than the length of $ then spaces are "padded"
onto the left to make a TEXT value of length n.

EXAMPLE:
a$="This is text."
PRINT "***®*:pADRIGHTS(a$,20) ;" ***"

will output:
okl This is text,***

92

PAGE NUMBER

USAGE:
PAGE NUMBER

PAGE NUMBER is a variable that returns a number and may only
be used in a numeric expression.

PURPOSE AND OPERATION:

To return the current page number when PRINTing to the
alternative print path, the device or file stated in the SET
PRINT TO statement. PAGE NUMBER can not be assigned in the
usual way; instead use the SET PAGE NUMBER TO n statement.
PAGE EJECTs and footer traps (see SET FOOTER TO) increment
the PAGE NUMBER variable,

EXAMPLE:
SET HEADER 10 head
SET PRINT TO "/p"

LABEL head
PRINT PAGE NUMBER

RETURN
This 1s part of a report, with the header subroutine set to

head. In the head subroutine the PAGE NUMBER is PRINTed
out.,

93

PRINT

USAGE:
PRINT expression list endmark

where expression list is a list of any type of expressions
separated with commas or semicolons, and endmark is one of
the tollowing:

H - semicolon

' - comma
<no mark>

PURPOSE AND OPERATION:

PRINT will output a list of values. When expressions
are separated with a comma, enough spaces are printed so
that the next expression will be printed at the next column
that 1s divisible by 16. PRINT will normally print on your
terminal screen but this can be changed with several SET
statements. SET SCREEN OFF will disable PRINT from printing
on the screen. SET SCREEN ON will enable it. SET PRINT TO
"/p" will establish /p as an alternative PRINT device. If
you then SET PRINT ON, PRINT will send output to /p. SET
PRINT OFF will disable PRINT to /p but will keep the path to
/p open, In multi-user situations you may want to close the
printer path (SET PRINT TO ""), so other users may use the
printer. Instead of a printer you can SET PRINT TO
filename, so you can edit your output or print it later.

The endmark character is either a semicolon (;) meaning
don't start a new line, or a comma (,) meaning move over to
the next column divisible by 16, or nothing () meaning start
a new line,

EXAMPLE:
MODULE printtest
INTEGER a
REAL p
TEXT a$ of 255

a=34
p=123.25
a$="the number is "

PRINT "This is one print line"

PRINT "John's name:"

PRINT ‘The title was "Gone with the wind"'

PRINT "note that the semicolon stops a new line";

94

PRINT " same line"

PRINT a$;a;", the amount is $";p

PRINT "the figures for the last month are:"
PRINT 234.32,123.23,1234.23,10.2

will output:
This is one print line
John's name:
The title was "Gone with the wind"
note that the semicolon stops a new line same line
the number is 34, the amount is $123.25
the figures for the last month are:
234.32 123,23 1234.23 10.2

Note that to print a single quote in John's, double quotes
are needed to surround the text, and double quotes in "Gone
with the Wind" must be surrounded by single guotes, Also
note that the fourth output line came from two statements
(the semicolon does not print a new line). Finally, note
that several items can be output by a single PRINT
statement.

95

QuIT

USAGE:
QUIT

PURPOSE AND OPERATION:

To stop all execution and return to the operating sys-
tem or executive. QUIT differs from END in that QUIT stops
all execution of the IMS program, while END will stop execu-
tion or the current module and return to the calling module.
QUIT is useful for dealing with fatal errors, errors which
mean the module cannot continue,

EXAMPLE:
IF ERROR = 51
PRINT "HARDWARE ERROR - CHECK EQUIPMENT"
QuUIT
ENDIF

This will stop all if error 51 were encountered.

96

range

USAGE:
COPY file tag key clause e range
DELETE file tag key clause range
LIST file tag key clause range
MARK file tag key clause range
SCAN file tag key clause range

UNMARK file tag key clause range

where range refers to the optional range specification.

PURPOSE AND OPERATION:

To specify which records the file command will operate
on, and which action to take on a record which meets the
range specification. The range specification can be ex-
plicitly stated with each of the file commands, or it can be
omitted, in which case the default for the file command is
assumed. The defaults are ALL the records for the COPY,
LIST and SCAN. For DELETE, MARK, and UNMARK, the current
record, CURRENT, is the default. The range specification
has 2 parts, the actual range of records to work on, and
then the action to take on a record which meets the
specification. There can, in fact, be zero or more actions
specified in a range.

1. The Range

the various choices are:

a) ALL
all the records in the file.

b) ALL FOR condition
all the records that satisfy the condition. The
condition may compare variables, fields, and
constants, with any of the relationals.

Cc) ALL WHILE condition
starting at the first record, all records until
the condition is false.

d) PREVIOUS n
the previous n records, including the current
record, where n is a numeric expression.

e) CURRENT
the current record.

f) NEXT n
the next n records, including the current record,
where n is a numeric expression,

g) PREVIOUS n FOR condition
the previous n records that satisfy the condition,

97

h) PREVIOUS n WHILE condition
the previous n records 9r until condition is
false.
i} NEXT n FOR condition
the next n records that satisfy the condition.
3) NEXT n WHILE condition
the next n records or until condition is false.

2.
a) LOWEST expression TO variable
store the lowest value of expression in variable.
b) HIGHEST expression TO variable
store the highest value of expression in variable.
c) COUNT TO variable
store the number of records in variable.
d) TOTAL expression TO variable
total all the values of expression and store
result in variable.
e) PRINT ...
standard PRINT statement.
£) LET ...
standard LET statement with assignment to field
variables. For the SCAN and COPY commands,
NOTE: LOWEST, HIGHEST, COUNT and TOTAL will leave the
value ot the variable unchanged if no records are
selected. More than one action may appear in a
statement.
EXAMPLE:

NOTE file "inventory_list"™ has fields NAME,
NOTE PARTNO, AMOUNT, and COST

REAL totalems
LONG num_records

OPEN "inventory_list"™ AS INV

LIST ALL FOR LEFTS$(PARTNO,3)="3A4" AND AMOUNT<100
AND COST >50.00

MODIFY ALL FOR AMOUNT>100 AND COST>100.00
LET COST=COST*0.90 PRINT "NAME: “;NAME

SCAN ALL FOR TOTAL AMOUNT TO totalems
COUNT TO num_records PRINT "Total is:";
total_items PRINT "Number of records are:";
num_records

FIND FIRST

LIST CURRENT

LIST NEXT 3

will list all the inventory records in the "3A4" series with

amount in stock less than 100 and cost more than 50 dollars.
Then 1t will reduce by 10 percent the cost of all inventory

98

records with more than 100 in stock and a cost of more then
100 dollars, and print the name of each it changes. Then it
will scan through all the records and print the total number
of items in stock and how many records are in the file.
Finally it will LIST the tirst record and then the first 3

records.

99

USAGE:
REAL (e)

where e is any expression.

REAL is a function that returns a number and may only be
used in a numeric expression (see EXPRESSION).

PURPOSE AND OPERATION:

To return a number as a REAL value. REAL will take any
expression and convert it to a REAL.

An error will result if a TEXT expression cannot be
converted into a REAL.

EXAMPLE:
PRINT REAL(2+232)
PRINT REAL(-5285)
PRINT REAL("284.78")

will output:
234
-5285
284,78

100

USAGE:
RECORD

RECORD is a function that returns a LONG number and may only
be used in numeric expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To return the record number of the current record.
Each record is numbered sequentially in the file. RECORD
will return a zero if a previous FIND statement did not find
a record. RECORD should only be used when a file is OPEN.

EXAMPLE:
1. OPEN "names" as filel
FIND EXACT "JOHN SMITH"
IF RECORD<>0 THEN
PRINT "FOUND"
ELSE
PRINT "NOT FOUND"
ENDIF

which will output:
FOUND

if a record for JOHEN SMITH is present in file names and
NOT FOUND

if 1t isn't.

2. OPEN "names" as filel
FIND FIRST
WHILE RECORD <>0 DO
PRINT NAMEFILE.NAME
FIND NEXT
ENDWHILE

which will output all the names in file names.

101

USAGE:
looptype

REDO

.o

endlooptype

where looptype is one of LOOP, WHILE, REPEAT and endlooptype
is one ot the matching ENDLOOP, ENDWHILE, UNTIL statements.

POURPOSE AND OPERATION:

To 1gnore the remainder of the loop and continue execu-
tion at the start of the loop. REDO is a simple way of
avoiding execution of statements at the bottom of a loop.

EXAMPLE:

a=0

WHILE a<8 DO
a=a+l
IF a=5 THEN

REDO

ENDIF
PRINT a

ENDWHILE

will output:

NV R W

note that the 5 was not output because of the IF ... REDO
statement,

102

REINDEX

USAGE:
REINDEX file tag key clause

where FILE file tag and key clause are both optional, and
refer to an existing key in an already OPENed file.

PURPOSE AND OPERATION:

To re-index an existing file and remove marked records.
REINDEX is necessary when CHECK indicates a BAD condition,
or to delete all MARKed records. REINDEX will go through
the aata file, remove MARKed and DELETEd records and gener-
ate new indexes in place of the old ones. REINDEX will not
erase or change any unMARKed data.

EXAMPLE:
OPEN "mail_list" as MAIL
FIND FIRST
MARK
REINDEX FILE MAIL

which will delete the first record and any other MARKed
records.

103

relationals

USAGE:
el r e2

where el and e2 are expressions of the same type -- either
TEXT, numeric or DATE, and r is one of the following
relationals:

or EQ equal to

or GT greater than

or LT less than

>= or GE greater than or equal to
<= or LB less than or equal to

<> or NE not equal to

AV Il

or if el and e2 are both TEXT values then the following
relationals can be used:

BW begins with
cr contains
SL sounds like

PURPOSE AND OPERATION:

To test one value versus another. A relational will
return true (1) or false (0) according to the comparison of
one value to another. For numeric expressions the testing
is straight forward: 3>4 returns talse, 7 LE 10 returns
true, etc.

For TEXT expressions the ordering is according to the
"ASCII"™ sequence (see ASCII table in Appendix). "JONES" >
"SMITH" returns false, and "JENKINS"™ LT "JENSEN" returns
true. The ASCII sequence is similar to the alphabet's
order, except that lower case letters are considered higher
than upper case letters. So "smith"™ > “"SMITH" returns true,
"2ZZ" < "aaa" returns true, etc. The purely TEXT relationals
are aiso straightforward, BW returns true if el begins with
e2, CT returns true if el has the value of e2 anywhere in
it, and SL returns true if el sounds like e2 (only the text
up to a punctuation mark is compared in SL).

EXAMPLE:
INTEGER a,b
REAL rl
TEXT a$,bs

104

b$="SMITH"

IF a<b THEN

PRINT a;" is less than ";b
ELSE

PRINT a;" is not less than ";b
ENDIF
IF rl GE b THEN

PRINT rl;" is greater than or equal to ";b
ELSE

PRINT rl;" is less than ";b
ENDIF
IF a$ > b$ THEN

PRINT a$;" is greater than ";bs
ELSE

PRINT a$;" is not greater than ";bs
ENDIF

IF "yes it is" CT "yes" THEN
PRINT "true"

ELSE
PRINT "false"

ENDIF

IF "SCHMIDT" SL "SMITH" THEN

PRINT "SCHMIDT sounds like SMITH"
ELSE

PRINT "SCHMIDT doesn't sound like SMITH"
ENDIF

which will output:
4 is less than 6
4 is less than 6
SMITH AND WESSON is greater than SMITH
true
SCHMIDT sounds like SMITH

105

REPEAT ... UNTIL

USAGE:
REPEAT

UNTIL condition

PURPOSE AND OPERATION:

To loop until a condition becomes true, REPEAT marks
the start of the loop, and UNTIL condition marks the end of
the 1loop. condition is any expression that evaluates to
true or false. Examples are amount<total and
balance>deductions, which have relationals like <, >, =, <=,
>=, CT, etc. in them (see RELATIONALS). The loop will con-
tinue executing until the condition becomes true. This
makes the REPEAT loop execute at teast once.

EXAMPLE:
REPEAT
PRINT "Press ESC to continue: ";
a$=GETKEY
UNTIL a$=CHRS$(27)

which waits for the ESCape key to be pressed before
continuing.

106

RESUME

USAGE:
SET TRAP TO label
LABEL label

RESUME

PURPOSE AND OPERATION:

To continue execution after an error. Typically RESUME
will be in the error trapping statements as pointed to by
SET TRAP TO label. The action of RESUME is to continue ex-
ecution at the statement after the error-causing statement.
This differs from RETRY which re-executes the error-causing
statement. RESUME is helpful in that the error can be
handled in the error trapping statements and then RESUME is
used to go back to the main part of the module.

EXAMPLE:
SET TRAP TO TRAP
PRINT 10/0
PRINT "back in main"
END

LABEL trap
PRINT "error encountered"”
RESUME

since dividing 10 by 0 is an error, the following will be
output:

error encountered

back in main

107

RESUME AT

USAGE:
SET TRAP TO trap label
LAééL resume label
LAééL trap label

se e

RESUME AT resume label

PURPOSE AND OPERATION:

To resume execution at a specific statement after an
error 1s encountered. Typically RESUME AT will be used in
the error trap to resume execution at a specific label in
the program.

EXAMPLE:
SET TRAP TC trap

LABEL enter

PRINT "ENTER A NUMBER";
INPUT num

PRINT 10/num

END

LABEL trap
PRINT "error encountered”
RESUME AT enter

which will prompt the operator to enter a number. If the
user enters a zero,

error encountered
is output and the prompt is given again.

108

USAGE:
SET TRAP TO label
LABEL label

RETRY

PURPOSE AND OPERATION:

To re-execute the error-causing line. RETRY will typi-
cally be part of an error trapping subroutine that is
pointed to py SET TRAP TO label. RETRY will transfer execu-
tion back to the error-causing line. RETRY is useful for
those kinds of errors which happen by operator carelessness
and are easily rectified.

Some precautions need tc be taken in the event that the
error causing line continues to cause an error. You may
need to keep track of how many times the same error occurs
and take appropriate action,

EXAMPLE:
SET TRAP TO trap
LABEL trap
PRINT "insert disk into drive A"
RETRY

109

RIGHTS$

USAGE:
RIGHTS ($,n)

where $§ is any TEXT expression and n is any numeric
expression.

RIGHT$ is a function that returns a TEXT value and may only
be used in TEXT expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To return a TEXT value of the n rightmost characters of
$. If n is larger than the length of $ then the entire $ is
returned. If n is less than or equal to 0 then the null
TEXT value ("%), is returned.

EXAMPLE:
a$="this is the text"
PRINT RIGHTS$(as$,4)
PRINT RIGHTS$(as$,100)

will output:

text
this is the text

110

ROUND

USAGE:
ROUND (nl,n2)

where nl is any numeric expression and n2 is a numeric ex-
pression that evaluates to a positive integer.

ROUND is a function that returns a number and may only be
used in numeric expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To return a number to a given number of decimal places.
ROUND will return the value of nl with n2 decimal places.
If nl has more than n2 decimal places then nl is "rounded
up" at the n2th place. If n2 is less than zero then it is
taken to pe zero.

EXAMPLE:
PRINT ROUND(1.556,2)
PRINT ROUND(-1.556,2)
PRINT ROUND(334.4567,0)

will output:
1.56
~-1.56
334

111

SCAN

USAGE:
SCAN file tag key clause range

where file tag, key clause, and range are all optional and
reter to an existing key in an already opened file and range
refers to the range specification (see RANGE and KEY
CLAUSE) .

PURPOSE AND OPERATION:

To change a range of records. SCAN will go through the
specified file by the specified key, (or through the current
file and key if none is specified), and change fields in
records that match the range specification. The changes are
done through LET statements within the range specification,
which assign the tield(s) a new value. If there is no LET
in the range then no update of the file takes place.

EXAMPLE:
NOTE "inventory_list" has fields NAME, PARTNO,
NOTE AMOUNT and COST
OPEN "inventory_list" AS INV
SCAN ALL FOR AMOUNT>100 LET COST=0.90*COST PRINT
"name: ";NAME, "part number: “;partno
CLOSE FILE INV

will go through all records in file inventory_list and
reduce cthe cost by 10 percent, of those items with more than
100 in stock. It will also PRINT the name and part number
of each record it changes.

112

SET

USAGE:
SET command

where the possible SET commands are:

SET BOTTOM MARGIN TO n
SET DATE TO format specs
SET FOOTER TO footer label
SET FOOTER OFF

SET FORM TO pathlist

SET FORM OFF

SET HEADER TO header label
SET HEADER OFF

SET INPUT FROM pathlist
SET INPUT <ONI{OFF>

SET LEFT MARGIN TO n

SET PAGE NUMBER TO n

SET PRINT TO pathlist

SET PRINT <ONI|OFF>

SET RIGHT MARGIN TO n

SET SCREEN <ONIOQOFF>

SET SINGLE <ONI|OFF>

SET TOP MARGIN TO n

SET TRAP TO label

SET TRAP OFF

where <ONIQOFF> means that either ON or OFF should be stated,
and n specifies a numeric expression.

PURPOSE AND OPERATION:

To change various IMS parameters. These include where
the module sends output and gets input, turning screen out-
put on or off, setting the DATE format, setting the printer
parameters, setting the error traps, and other traps. The
various commands are:

1. SET BOTTOM MARGIN TO n
This sets the bottom margin on the printer page to
start at the nth line. The default is 60 to leave a 6
line footer and margin at the end of a 66 line page

(the footer starts at this line). SETting the bottom
margin to 0 disables automatic footers (see SET FOOTER
TO) .

113

2.

114

SET DATE TO date format
This sets the format in which DATE expressions are
to be entered or output. date format is a text expres-
sion made up of several format control characters:

LETTER EXPLARATION EXAMPLE
Y long year 1985
y short year 85
M long month June
1 short month (3 characters) Jun
N long month digit 06
n month digit 6
D long day 02
d day 2
L long weekday name Saturday
w short weekday (3 characters) Sat
\ next character is literal

Other letters which are in the date format are
left in place, including spaces, For June 2, 1985 the
date format "y/n/d" would produce -- 85/6/2. The
default date format is "M d, Y" and produces a date in
the form of June 2, 1985.

Checks are made to ensure that you have only one
year, month and day specified in the date format.

SET FOOTER TO footer label

This sets the subroutine to call when the footer
is to be printed on the report page. Footers are text
that are printed at the bottom of the page. The footer
subroutine 1s typically part of a generated IMS report
module, and it is called when the LINE NUMBER variable
(the number of lines printed on the page) is the same
as the number in the SET BOTTOM MARGIN TO statement.

SET FOOTER OFF
This turns off the action caused by a previous SET
FOOTER TO statement so that the footer subroutine is no
longer called to print the footer,

SET FORM 10 pathlist
pathlist is a text expression., This displays the
form named on the screen, and causes subsequent DIS-
PLAYs and ENTERs to pe done using that form. It will
not display the tield information on the form.
NOTE: do not use the file extension for the form name.

SET FORM OFF
This releases the memory reserved for the form.
Subsequent DISPLAYs and ENTERs may not be used before
another SET FORM TO statement is executed.

7. SET HEADER TO header label

This sets the subroutine to call when the header
(the title) is to be printed at the top of the report
page. The header subroutine is typically part of a
generated IMS report module, and is called when the
LINE NUMBER variable (the number of lines printed on
the page) is the same as the number in the SET TOP MAR-
GIN TO statement.

8. SET HEADER OFF
This turns off the action caused by a previous SET
HEADER 10 statement so that the header subroutine is no
longer called to print the header.

9. SET INPUT FRCM pathlist
pathlist is a text expression and names the file
or device to receive input from when SET INPUT ON <4s in
effect. If pathlist is NULL ("") then the previous
path is closed,

10. SET INPUT <ONIOFF>
If ON then input comes from the device or file
named in the previous SET INPUT FROM pathlist
statement, if OFF then input comes from the terminal
keyboard. When the end of the alternative input path
is reached, INPUT reverts back to the keyboard.

11. SET LEFT MARGIN TO n
This sets the left margin on the printer page to
the nth column. The default is column 1.

12. SET PAGE NUMBER TO n
This sets the page counting variable, called PAGE
NUMBER to n.

13. SET PRINT TO pathlist
pathlist is a text expression and names the file
or device to send output to when SET PRINT ON is in
effect. Footers, headers, margins, EJECT PAGE, PAGE
NUMBER and LINE NUMBER relate only to this file or
device, also called the alternative print path. If
pathlist is NULL ("") then the previous path is closed.

14, SET PRINT <ON|OFF>
If ON then output is sent to the device or file
named in the previous SET PRINT TO pathlist statement.
Output is always sent to the screen unless SET SCREEN

OFF is in effect.

15. SET RIGHT MARGIN TO n

This sets the right margin on the printer page to
the nth column. The default is column 80.

115

l6.

17.

18.

19.

20.

SET SCREEN <ONIOFF>
This turns screen output on or off.

SET SINGLE <ONIOFF>
This SET statement is to control continuous versus
single sheet printing. SET SINGLE ON means that after
every page printed, IMS will give the message on the
screen:
Insert new page and press RETURN to continue:

and wait for you to put another sheet in the printer
betore continuing.

SET TOP MARGIN TO n

This sets the top margin on the printer page to n
lines. The default is 1 line. SETting the top margin
to 0 disables automatic headers (see SET HEADER TO).

SET TRAP TO label
This sets the position to go to when errors occur
during execution of the module. SET TRAP TO should be
near the tront of the module. Its action is to tell
IMS to go to position label if any error occurs. The
statements after the label form an error trap, and
statements RESUME, RETRY, and RESUME AT help handle the
error. The last SET TRAP TO statement executed is the
one currently in effect. See the appendix for ERROR

NUMBERS to see what errors are possible.

SET TRAP OFF

This turns off the error trapping set by SET TRAP
TO. When the error trap is OFF then errors cause an
error message to pe displayed and halt the program.

EXAMPLE:

1.

116

SET PRINT TO "/p"
SET PRINT ON
SET SCREEN OFF

SET TOP MARGIN TO 2

SET BOTTOM MARGIN TO 62
SET LEFT MARGIN TO 1

SET RIGHT MARGIN TO 80
SET HEADER TO top

SET FOOTER TO bot

SET SINGLE OFF

SET INPUT FROM "/4d0/data"
SET INPUT ON

LABEL top

RETURN
LABEL bot

“s e

RETURN

This will set output to the printer and turn screen output
off. Then it will set the page margins, the headers, the
footers, and the single sheet printing mode off. Input will
come from file /d0/data.

Note: The printer may miss a character when printer and
screen output are both on, and tmode pause is on.

2. SET TRAP TO trap
SET FORM TO "wagesform"
ENTER number
PRINT 10/number

END

LABEL trap
PRINT "error encountered"
RESUME

which will show the wagesform form on the screen, then enter
a field called number from the form. If the operator enters
0, causing a divide by zero error, execution continues at
the label trap,

error encountered
will be printed and RESUME will continue execution after the
error.

3. DATE dt
dt="June 23,1985"
SET DATE TO "w M 4, Y"
PRINT dt
SET DATE TO "Y M 4"
PRINT dt
SET DATE TO "y-n-d"
PRINT dt

which will output:
Sunday June 23, 1985
1985 June 23
85-6-23

117

SHELL

USAGE:
SHELL $

where $ is a TEXT expression.

PURPOSE AND OPERATION:

To send the operating system a command. The text ex-
pression should have a length no greater than 80 characters.
For valid commands see your operating system reference
manual,

EXAMPLE:
SHELL "dir*"

will give the directory.

118

SIGN

USAGE:
SIGN (n)

where n is any numeric expression.

SIGN is a function that returns a number and may only be
used in numeric expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To return the sign of a numeric expression. SIGN will
return -1 if n is negative, 0 if n is equal to zero, and 1
if n is positive, SIGN is useful when the sign rather than
the magnitude of the number is important.

EXAMPLE:
a=-2.3
PRINT SIGN(a)
PRINT SIGN(4)
PRINT SIGN(OQ)

will output:
-1
1
0

118

SOUND#$

USAGE:
SOUNDS (§)

where $ is a TEXT expression.

SOUND$ is a function that returns a text value and may only
be used in TEXT expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To return a text value indicating the sound of §.
SOUND$ is useful for applications where the exact spelling
of a name is not known, but the sound of it is. The conver-
sion or text to sound stops at the first non-alphabetic
character. The sound is stored in a coded form in a maximum
of four characters,

EXAMPLE:
NOTE file "mail™ has keys NAME and NAMESND and
NOTE field NAME
PRINT "Name to search for: "; OPEN "mail®
INPUT in_name$
FIND KEY NAMESND EXACT SOUNDS$ (in_names$)
LIST NEXT 100 WHILE name SL in_nameS$

This wi1ll prompt and input a name value, then search an in-
dex of the sounds of the name field for the sound of the
name you entered. Up to 100 records which sound like (SL)
the name will then be listed.

120

SQRT

USAGE:
SQRT(n)

where n is a numeric expression.

SQRT is a function that returns a number and may only be
used in a numeric expression (see EXPRESSION).

PURPOSE AND OPERATION:
To return the square root of n. If n is negative then
an error is generated.

EXAMPLE:
PRINT SQRT(9)

will output:
3

121

SUBSTR

USAGE:
SUBSTR (tl1,t2)

where tl and t2 are TEXT expressions.

SUBSTR is a function that returns a number and may only be
used 1in numeric expressions (see EXPRESSION).

PURPOSE AND OPERATION:

To find if and where a TEXT value is inside another
TEXT value,. SUBSTR returns a number indicating at which
character the tl text starts in t2, and a zero if it is not
present. SUBSTR is useful in cases where the text may have
many characters, but only a specific TEXT value is important
in the text.

PRINT "enter your answer: “;

INPUT responses$

IF SUBSTR ("YES",CAP$(RESPONSES$)) <>0 THEN
PRINT *affirmative action taken"

ENDIF
will output:

affirmative action taken
if the user's response had YES (case ignored) in it.

122

TAB

USAGE:
PRINT TAB(n)

where n is any numeric expression with a value greater than
zZero.

TAB 1is a function that can only be used in a PRINT
statement.

PURPOSE AND OPERATION:

To move the screen cursor or printer printhead to the
nth column. The columns are numbered starting at 1 in the
left margin, and increasing to 80 or beyond at the right
margin, TAB is a convenlent way to output at a certain
position on the screen or printer. If n is less than the
column that the cursor is currently at, the tab is ignored.
Another point to remember is that the screen output and the
alternative print path named in the SET PRINT TO have
separate TAB columns that are separately "remembered".

EXAMPLE:
1. PRINT TAB(10);"NAME";TAB(20); "NUMBER"

will output:

NAME NUMBER
note that "NAME" is on tab 10 and "NUMBER" is on tab 20.

123

TEXT

USAGE:
TEXT (e)

where e is any expression.

TEXT is a tunction that returns a value of type TEXT and may
only be used in expressions of type TEXT (see EXPRESSION).

PURPOSE AND OPERATION:
To convert any value into a value of type TEXT.

EXAMPLE:
INTEGER group, part
TEXT inventory_item OF LENGTH 10
group=224
part=101
inventory_item=TEXT(group)+"-"+TEXT (part)
PRINT "inventory item: "“;inventory_item
will output:
inventory item: 224-101

124

TIME

USAGE:
TIME

TIME is a function that returns a TEXT value and may only be
used in TEXT expressions (see EXPRESSION).

PORPOSE AND OPERATION:

To return the current time. TIME will return the cur-
rent hours, minutes and seconds.

EXAMPLE:
PRINT TODAY;"™ ";TIME

which will output the current date and time, for example:
JUNE 23,1985 12:10:56

125

TODAY

USAGE:
TODAY

TODAY 1s a function that returns a date and may only be used
in DATE expressions (see EXPRESSION).

PURPOSE ARD OPERATION:

To return the current date. TODAY returns the current
year, month and aay, and can be PRINTed out, assigned to
date variable, or used in a condition.

EXAMPLE:
DATE dt

PRINT TODAY
dt=TODAY-7
PRINT dt

will output something like:

June 23,1985
June 16,1985

126

TRIMS

USAGE:
TRIMS ($)

where $ is any TEXT expression.

TRIMS$ is a function which returns a TEXT value and may only
be used in TEXT expressions (see EXPRESSICN).

PURPOSE AND OPERATION:

TO return $ without the leading and trailing spaces.
If § was only a TEXT value of spaces then the null TEXT
value (""), is returned. TRIMS$ is useful when the text may
have starting and ending spaces, and these spaces are to be
ignored. TRIMS$ may also shorten TEXT values, thus requiring
less storage.

EXAMPLE:
as=" note starting and ending spaces "
PRINT "***", TRIMS(a$); Mm*x**"

will output:
note starting and ending spaces

127

TRUNCATE

USAGE:
TRUNCATE (nl,n2)

where nl and n2 are numeric expressions.

TRUNCATE is a function that returns a number and may only be
used in numeric expressions (see EXPRESSION).

PUORPOSE AND OPERATION:

To return a number with a given number of decimal
places. TRUNCATE will return the value of nl with n2
decimal places. If nl has more than n2 decimal places then
the extra places are dropped. 1If n2 is less than zero then
it is taken to be zero.

EXAMPLE:
PRINT TRUNCATE(1.556,2)
PRINT TRUNCATE(-1.556,2)
PRINT TRUNCATE(334.588,0)

will output:
1.55
-1.55
334

128

UNLINK

USAGE:
UNLINK file tag

where file tag is optional, and refers to an OPENed file
used in a previous LINK statement.

PURPOSE AND OPERATION:

To unlink a previously linked file. UNLINK will deal-
locate the memory set up tor the linking process, and allow
different LINKs to be set up. The file tag listed in the
UNLINK command must be the same as the second file tag in a
previous LINK statement.

EXAMPLE:
NOTE file "mail_customer" has fields NAME, NUMBER,
NOTE and ADDRESS and file "catalog" has fields
NOTE NUMBER and COMMENT with KEY NUMBER
NOTE
OPEN "mail_customer” AS MAIL
OPEN "catalog"™ AS CAT
LINK FILE MAIL KEY NUMBER TC FILE CAT CAT.NUMBER

UNLINK FILE CAT

129

USAGE:
UNMARK file tag key clause range

where file tag, key clause and range are optional and refer
to an existing key in an already OPENed file, and range
refers to the range specification (see RANGE and KEY
CLAUSE) .

PURPOSE ANRD OPERATION:

To unmark previously MARKed records. UNMARK will go
through the stated file by the stated key (or through the
current file and key if they are not stated), and unmark
each record that matches the range specifications. If range
is not specified then only the current record is UNMARKed.
These unmarked records will act as they did before, and will
not be deleted when the REINDEX statement is executed. UN-
MARK is useful to correct a mistaken MARK statement.

NOTE file “customer_list"™ has key field NAME
OPEN "customer_list"™ AS CUST

FIND FILE CUST KEY NAME FIRST
WHILE RECORD<> 0 DO
IF MARKED THEN
PRINT NAME
PRINT “"UNMARK THIS ONE ? (Y¥/N)";
INPUT RESPONSES$
IF CAPS(RESPONSES$)="Y" THEN
UNMARK
ENDIF
ENDIF
FIND NEXT
ENDWHILE

which will go through all the records of file customer_list,

print the NAME field of all the MARKED records, and ask the
operator if the MARKED record should be UNMARKed.

130

UPDATE

USAGE:
UPDATE file tag

where file tag is optional and refers to an open file.

PURPOSE AND OPERATION:

To change an existing record. UPDATE will change the
current record in the stated file, (or in the current file
if file tag is not present). Typically a specitic record
has been found using FIND, the fields of the record then
have information entered into them by INPUT or ENTER, and
UPDATE is used to change the record.

EXAMPLE:
NOTE: NAME, ADDRESS are field names of
NOTE file "mail_list"
OPEN "mail_list"™ AS MAIL
FIND EXACT "JOHN SMITH"
IF RECORD<>0 THEN
PRINT "new name? ";
INPUT NAME
UPDATE
ENDIF

which will search for the record with name "JOHN SMITH" in

file mail_list. If it is found, a new name is input and the
record updated.

131

USE

USAGE:
USE file tag key clause

where either file tag or key clause may be omitted, and file
tag is the tag for a previously opened file, and key clause
is a key in that file.

PURPOSE AND OPERATION:

To explicitly set the current file and key. USE will
notify IMS that in the subsequent file operations, the
specified file and/or key are to be used if no tile or key
clauses are given in the operation(s). If a file tag or key
clause are stated in the subsequent file operations, they
then become the new current file and/or key.

EXAMPLE:
NOTE "mail_list" has fields NAME, ADDRESS, and ZIP
NOTE and NAME and ZIP are keys.
OPEN "mail_list"™ as MAIL
USE KEY Z1P
LIST

will open file mail_list and then list 1ts contents by order
of the ZIP key.

132

VALUE

USAGE:
VALUE(e)

where e is any expression.

VALUE is a function that returns a number and
used in numeric expressions (see EXPRESSION).

PURPOSE AND OPERATION:
Identical to REAL (see REAL).

may only be

133

WHILE ... ENDWHILE

USAGE:
WHILE condition DO

so

ENDWHILE

PURPOSE AND OPERATION:

To loop while a condition remains true. WHILE marks
the start ot the loop, and ENDWHILE marks the end of the
loop. condition is any expression that evaluates to true or
false. Examples are amount<total and balance>deductions
which nave relationals like <, >, =, <=, >=, CT, etc. in
them (see RELATIONALS). The loop will continue to be ex-
ecuted while the condition remains true., Note the condition
is at the start of the loop, not at the end like the REPEAT
loop. This means that the loop will never be executed if
the condition is false at the very start.

BXANMPLE:
1. a=10
WHILE a<l10 DO
PRINT a
a=a+l
ENDWHILE

will output nothing since the condition "a<l0" was false to
begin with

2. a=5)
WHILE a<l0 DO
PRINT a
a=a+l
ENDWHILE

will output:

W~

134

XOR

USAGE:
conditionl XOR condition2

where conditionl and condition2 are boolean expressions
(see EXPRESSION and RELATIONALS).

XOR is only used between two conditions in order to build a
more complex condition.

PURPOSE AND OPERATION:

To test for cases when either conditionl or condition2
are true, but not both. XOR will return true if only one of
the stated conditions is true, and false otherwise. It dif-
fers from OR 1in that OR is true if both conditions are true.

EXAMPLE:
IF amount=subtotall XOR amount=subtotal2 THEN
PRINT "Enter the TD1 claim amount: ";
INPUT TD1
ENDIF

will prompt the operator to enter the TD1l amount if amount

is equal to subtotall or amount is equal to subtotal2, but
not 1f both conditions are true.

135

Index

A
ABS
absolute value
adding data into a data base
AND
arithmetic
arrays
ASCII
assignment

B
branching
conditional
multi-way
subroutines
unconditional

CALL

CAPS

CASE

centering text

CHAIN

change working directory

CHD

CHECK

CHRS$

CLEAR

CLEAR FORM

CLEAR LINE

CLEAR SCREEN

clearing
data bases
screen forms
terminal lines
terminal screen

CLOSE

CLOSE ALL

column tabulation

comments

condition

AND
NOT
OR

XOR

57,131
88

65

12
13
91
15
17
17
18
19
20
21
22
23

20
21
22
23
24
24
123
86

6,13,44,55,74,85,90,97,

104,106,134,135
6

85

90

135

137

138

constants
control codes
conversion
ASCII
CHRS
DATE
INTEGER
LONG
REAL
TEXT
VALUE
COPY
current
date
line
page
time
cursor positioning

D
data base identification
data types
DATE

arrays
constants
current
data type
default mask
expressions
default
file
key
mask
DELETE
detecting
duplicate file keys
end of file
escape key
key pressed
dimension
DISPLAY
documenting
DUPLICATE

E
EJECT PAGE
ELSE
END
end or file detection
ENDCASE

25
8,19

19
30
58
73
100
124
133
26

126
67
93
125
72

49

28

30

7

25

126

28
113,114
43

132
132
78,114
31

33
37
39
61
7

32
86
33

34
55
35
37,101
13

ENDIF
ENDLOOP
ENDWHEN
ENDWHILE
ENTER
EOF
ERROR
error handling
ERROR
HELP
RESUME
RESUME AT
RETRY
SET TRAP OFF
SET TRAP TO
error information
ESCAPE
EXECUTE
EXIT
expression
condition
date
numeric
text
extracting a substring

P
FIELD
FILE
bases
end of
integrity
ordering
regeneration
relations
LINK
UNLINK
structure
tag

FIND
function

GETKEY
GOSUB
GOTO

55

74

13
134
36,40
37

38

38

53
38,107
39,108
39,109
113,116
107,108,109,113,116
53

39

40

41

42

44

43

42

43

122

21,36,45,46,54,56,112

70
37,101
18

60

103

68

129

26,70
18,20,24,26,31,46,47,
49,57,68,70,75,87,103,
112,129,130,131,132
47

11,35

50
52

139

140

H
HELP
homophones

I
identifiers
IF
IMS interpreter access
INPUT
input control
ENTER
GETKEY
KEY PRESSED
SET INPUT FROM
SET INPUT OFF
SET INPUT ON
INSERT
INTEGER
array
constant
data type
expression
mask default
iteration
EXIT
LOOP ENDLOOP
REDO
REPEAT UNTIL
WHILE ENDWHILE

K
KEY
key clause

KEY PRESSED

LABEL

labeling a destination
LEFTS

LENGTH

LET

LIBRARYS

LINE NUMBER

LINK

LIST

listing data

53
104,120

54
55
40
56

36

50

61
56,113,115
113,115
113,115
57

58

7

25

28

42

78

41
74
102
106
134

59
18,20,26,31,33,47,59
60,68,70,75,103,112,
130,132

61

51,52,62,107,108,109,
113,114,115,116
62

63

64

65

66

67

68

70

70

LOCATE

LONG
array
constant
data type
expression
mask default

LOOP

MARK
MARKED
MASK
mask defaults
date
integer
long
real
text
MAX
memory management
MFREE
MIDS
MIN
MODULE
module termination
END
EXECUTE
QUIT

NOKEY

NOT

NOTE

numeric accuracy
ROUND
TRUNCATE

0
OPEN
operating system access
operators
OR

P
PADCENTERS
PADRIGHTS
PAGE NUMBER

75
76
32,36,77,114

113,114
78

78

78

78

80

81

81

82

83
9,15,35,84,96

35
40
96

60
85
86

111
128

87
118
88
90

91
92
93

141

142

parameters
PRINT
printer support
EJECT PAGE
LINE NUMBER
PAGE NUMBER
SET BOTTOM MARGIN TO
SET FOOTER OFF
SET FOOTER TO
SET HEADER OFF
SET HEADER TO
SET LEFT MARGIN TO
SET PAGE NUMBER TO
SET PRINT OFF
SET PRINT ON
SET PRINT TO
SET RIGHT MARGIN TO
SET SCREEN OFF
SET SCREEN ON
SET SINGLE OFF
SET SINGLE ON
SET TOP MARGIN TO
TAB

QUIT

R
range
range action(s)
range specification
REAL
array
constant
data type
expression
mask default
RECORD

marking

modifying
recursion
REDO
REINDEX
relationals
REPEAT
RESUME
RESUME AT

retrieval of marked records

9,15,84
94

34

67

93

113
113,114
113,114
113,115
113,115
113,115
93,113,115
113,115
94,113,115
34,67,94,113,115,123
113,115
113,116
113,116
113,116
113,116
113,116
123

96

26,31,70,75,97,112,130
99

98

100

7

25

28,29

42

78
21,26,31,32,37,47,57,
59,70,75,76,101,112,
130,131

75

112

10

102

103
6,85,90,104,106,134,135
106

107

108

130

RETRY
RETURN
right justifying text
RIGHTS
ROUND

)
SCAN
screen control
CLEAR FORM
CLEAR LINE
CLEAR SCREEN
DISPLAY
ENTER
LOCATE
MASK
SET FORM QFF
SET FORM TO
SET SCREEN OFF
SET SCREEN ON
TAB
screen forms
searching for data
SET
BOTTOM MARGIN TO
FOOTER OFF
FOOTER TO
FORM OFF
FORM TO
HEADER OFF
HEADER TO
INPUT FROM
INPUT OFF
INPUT ON
LEFT MARGIN TO
PAGE NUMBER TO
PRINT OFF
PRINT ON
PRINT TO
RIGHT MARGIN TO
SCREEN OFF
SCREEN ON
SINGLE OFF
SINGLE ON
TOP MARGIN TO
TRAP OFF
TRAP TO
SHELL
SIGN
single character entry
SOUND $

109
51
92
110
111

112

21

22

23

32

36

72
32,35,77,114
113,114
32,36,113,114
94,116

94,116

123
21,32,36,77,113,114
47

113

113

113,114
113,114
113,114
32,36,113,114
113,115
113,115
56,113,115
113,115
113,115
113,115
93,113,115
113,115
94,113,115
34,67,94,113,115,123
113,115
113,116
113,116
113,116
113,116
113,116
113,116
107,108,109,113,116
118

119

50

120

143

144

SQRT
square root

subprograms
subroutines
SUBSTR
T
TAB
tables
TEXT
array
constant
data type
expression
mask default
TIME
TODAY
TRIMS
TRUNCATE
types
1)
UNLINK
UNMARK
UNTIL
UPDATE
USE
v
VALUE
W
WHEN
WHILE

working directory

X
XOR

121

121
9,10,15
51

122

123
124

25
28
43
78
125
126
127
128
28

129
130
106
131
132

133

13
134
17

135

l l l I I I l I i l I l | I I l |

0{% INFORMATION
MANAGEMENT
|A \x

SYSTEM

CLEARBROOK SOFTWARE GROUP
INFORMATION MANAGEMENT SYSTEM

APPENDICES

Release B
January 1, 1986

Copyright 1985, 1986 Clearbrook Software Group Inc.

APPENDICES

Installation, . . .
Universal Terminal Driver
ASCII Character codes . . .
Syntax Summary . . « .« . . .
Operator Precedence
Extra Features
Compiler Error Numbers . . .
Interpreter Error Numbers .
Command Line Invocation . ,
File Extensions
Data Base Creator Reference
Text Editor Reference . . .
Forms Editor Reference . . .
Reports Editor Reference . .
Importing Data « « + « . . .

Exporting Data

17
18
20
24
28
30
31
34
41
47
57

61

APPENDIX A -~ INSTALLATION

There are two parts to installation of the IMS
programs. Part one is to copy the programs to the hard disk
or backup diskettes. Part two is to set up the universal
terminal driver (UTD) for the terminals in your system.

To install the programs on your system disk, place
original disk in a secondary disk drive. If your system
disk is /D0 and secondary drive is /D2 type the 0S9 command:

/d2/install /42 /d0
Thus, the general syntax of the command is:

<original disk>/install <original disk> <system disk>

If your original has come on several disks, this same
process will need to be repeated for each disk.

The install program will copy the following programs to
the CMDS directory of your system disk:

ims the executive (menu)

imsI the interpreter

imsC the compiler

imsD the file creator

imsF the screen form editor

imsR the report generator

tx the text editor

mkterm terminal driver editor

assoc associate terminal with driver
nmall list defined terminals and drivers
tname list driver associated with terminal

imsErrs error message file for imsI, imsC, imsD
help.FE help messages for imsF

help.RE help messages for imsR

help.TX help messages for tx

It will also create the directory IMS on your system
disk. Tutorial and example files will be copied into this
directory.

The directories UTD and UTD/UTD_DRIVER_FILES will be
created in the CMDS directory.

Now that the programs have been copied, you need to
configure the UTD in order for the software to run
correctly. Refer to appendix B for explanation of how to
configure the UTD and for an explanation of what it is and
does.

If IMS is being installed on a non-standard system
(where the CMDS directory is not in the rcot directory of
the system disk) then one of the following solutions can be
used:

1. Use a variation of the install command where instead of
specifying the system device, specify the directory contain-
ing the CMDS directory.

EXAMPLE: if the CMDS directory is in /DO/USERS, use:
/d2/install /d2 /d0/users

This will create the IMS directory in the /DO/USERS
directory.

2. To install the commands in a directory other than CMDS
you must copy the files manually or modify a file named
pathfile on the original disk. The file consists of a list
of path data, one piece of data per text 1line. You must
change the occurrences of CMDS to whatever directory you are
using. The data is in the format:

subpathl subpath2

or

subpath

If there are two subpaths, <original>/subpathl 1is
copied to <system>/subpath2. If there is only one subpath,
<original>/subpath is copied to <system>/subpath.

APPENDIX B - UNIVERSAL TERMINAL DRIVER

The universal terminal driver (UTD) is a collection of
programs which allow the user to maintain terminal functions
in a transparent, terminal independent manner. This is done
through the use of a table of values which may be set up for
any make of terminal desired. In addition, this table of
values, called a terminal driver, is then associated with a
physical device name on the user's system.

The files used by the UTD utility programs and other
programs using terminal independence reside in subdirec-
tories of the current execution directory. The UTD direc-
tory is located in the CMDS directory and contains a file
for each terminal installed in the system (term, tl, t2,
etc.). It also contains the directory (UTD_DRIVER_FILES)
which contain the driver files for the different types of
terminal you are using (tvi9l10, gvtl02, vtl00, etc.).

IT IS IMPORTANT WHEN A UTD PROGRAM OR OTHER IMS PROGRAM
IS INVOKED THAT THE CURRENT EXECUTION DIRECTORY CONTAIN THE
UTD DIRECTORY.

The four UTD utilities are:

1. mkterm - make terminal driver. This program allows
the user to create or alter any terminal driver. The
command line syntax is:
mkterm terml term2
or
mkterm terminal
or
mkterm

where terml is the name of an existing terminal driver,
term2 is the name for a new driver. terminal is an ex-
isting or new terminal driver. Terminal drivers are
located in the UTD/UTD_DRIVER_FILES subdirectory of the
current execution directory.
A terminal driver is a data file which contains infor-
mation about the codes to send to a particular make and
model of terminal to perform:

cursor addressing

clear screen and home cursor

clear to end of line

move cursor up, down, right and left

video attributes

line drawing characters

etc.

EXAMPLE: for a QUME QVT102 terminal

mkterm gvtl1l02

This will create a new terminal driver called
qvtl02 or edit an existing driver of the same name.
Several menus allow you to enter and modify data.

2. assoc - associate a terminal driver to a physical
device. The command line syntax is:
assoc device driver
or
assoc device

If no terminal driver is specified, the specified
physical device is removed from the list of known
driver-device associations.

EXAMPLE: /term is connected to a QUME QVT102
assoc term qvtl02

This will copy UTD/UTD_DRIVER_FILES/qvtl02 to
UTD/term.

3. nmall - name all defined terminal drivers and all
known physical device associations. Command line
syntax:

nmall
EXAMPLE:

nmall
will output:

Universal Terminal Driver defined devices

4. tname - name the terminal driver a physical device
is associated with. Command line syntax:
tname devicel(s)

where device(s) means zero or more physical devices may
be specified.

EXAMPLE:
tname term tl
will output:

term is associated with gvtlo02
tl is not defined

The last three programs, assoc, nmall and tname, are
fairly simply to operate with all processing done through
the use of command line arguments. The mkterm program,
however, requires some explanation.

The purpcse of mkterm is to create or edit any desired
terminal driver. Since a terminal driver is a table of
values, strings primarily, the main action done by mkterm is
the entering and displaying of these values. A menu allows
you to select which terminal function to change.

For entry of number of rows and number of columns, the
user selects the appropriate menu choices. At the prompt,
the new number should be entered as a base 10 integer.

For entry of strings, including part of cursor address-~
ing entry, the user again selects the desired terminal
function. At the prompt, the string of ASCII characters
constituting the sequence necessary to perform that function
on the target terminal should be entered. 1In order to allow
the user to enter control characters and other non-printable
characters, there are a three mechanisms.

The first is the use of a caret (7). The caret
placed in front of a character causes the control
character of that character to be used. For example,
"m is seen as the control character CARRIAGE RETURN.
If the controlled character is invalid, for example ~.,
the caret is ignored, yielding ".".

The second is the use of a dollar sign ($). Using
a dollar sign allows the user to specify a character as
a hexadecimal constant. The expected format for this
is $XX, where X is assumed to be a hexadecimal char-
acter. Thus, $0d would be seen as CARRIAGE RETURN, and
$41 would be seen as A. If X is not hexadecimal, it is
assumed to be zero.

The third is the use of a backslash (\). The
backslash placed in front of a character causes that

5

character to be viewed literally. I.E. - any sig-
nificance that character has to mkterm is lost. Thus,
to have a caret, dollar sign or backslash in the
string, the user would specify \", \$ and \\
respectively.

Finally, there is the specification of cursor
addressing. This is the most complex function, requiring
three strings, as described above, and two coordinate

specifications., A coordinate consists of: row or column
selection (8), cursor addressing type (T), and coordinate
offset (0) - a value added to row or column before it is

sent to the terminal. It should be noted here that the UTD
assumes that the top left corner of the screen is addressed
as 0,0. The user gives this coordinate specification in the
form of:

S;T:0

S may be R for row or C for column. T is a base 10 integer
in the range of 1 to 15. O is a base 10 integer in the
range of 0 to 255.

The various addressing types supported by the UTD are:

1 - coordinate is transformed linearly. I.E. - any
input simply has an offset added to it. One ter-
minal using this type is the TelevVideo TVI 910.

2 - coordinate is transformed into a string of ASCII
digits. The DEC VT100 is a terminal with this ad-
dressing type.

3 - coordinate is transformed into a BCD byte. One
terminal using this type is the ADDS-25.

When the data are displayed in the menu, integers are
simply printed, and strings are displayed in a readable
format, as are coordinate specifications. If a string or
coordinate is not defined (I.E. - the user entered a null
string for that function) a set of dashes is displayed.
Additionally, a string is delimited by "" (double gquotes),
and coordinates are delimited by I[1].

APPENDIX C - ASCII CHARACTER CODES

CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX
“@ NUL 0 00 * 44 2C X 88 58
“A SOH 1 01 - 45 2D Y 89 59
“B STX 2 02 . 46 2E yA 90 5A
“C ETX 3 03 / 47 2F [91 5B
“D EOT 4 04 0 48 30 \ 92 s5¢C
“E ENQ 5 05 1 49 31] 93 5D
“F ACK 6 06 2 50 32 " 94 SE
"G BEL 7 07 3 51 33 _ 95 5F
“H BS 8 08 4 52 34 * 96 60
"1 HT 9 09 5 53 35 a 97 61
“J LF 10 0A 6 54 36 b 98 62
“K VT 11 OB 7 55 37 c 99 63
“L FF 12 0cC 8 56 38 d 100 64
“M CR 13 0D 9 57 39 e 101 65
“N SO 14 OQE : 58 3A f 102 66
“0 s1I 15 OF : 59 3B g 103 67
“P DLE 16 10 < 60 3C h 104 68
“Q pcC1 17 11 = 61 3D i 105 69
“R DC2 18 12 > 62 3E j 106 6A
“S DC3 19 13 ? 63 3F k 107 6B
“T DC4 20 14 e 64 40 1 108 6C
“U NAK 21 15 A 65 41 m 109 6D
“V SYN 22 16 B 66 42 n 110 6E
“W ETB 23 17 C 67 43 0 111 6F

X CAN 24 18 D 68 44 p 112 70
“Y EM 25 19 E 69 45 g 113 71
“Z SUB 26 1A F 70 46 r 114 72
“[ESC 27 1B G 71 47 s 115 73
“\ Fs 28 1¢ H 72 48 t 116 74
"1 GSs 29 1D 1 73 49 u 117 75
“" RS 30 1E J 74 4A v 118 76
“_ Us 31 1F K 75 4B W 119 77
space 32 20 L 76 4C X 120 78
! 33 21 M 77 4D y 121 79
" 34 22 N 78 4E z 122 7a
35 23 o] 79 4F { 123 7B
$ 36 24 P 80 50 | 124 7¢C
$ 37 25 Q 81 51 } 125 7D
& 38 26 R 82 52 - 126 7E
' 39 27 s 83 53 DEL 127 7F
(40 28 T 84 54
) 41 29 U 85 55
* 42 2A v 86 56
+ 43 2B W 87 57

APPENDIX D - SYNTAX SUMMARY

This is a concise summary of the legal syntax for the
applications language. In being concise it is also very
cryptic, meaning that to totally understand it will take
time. It is included here as a ready reference that can be
kept near the computer when making and compiling a library
file of modules.

There are a number of representational conventions which

are used in the following definitions:

| separates choices for those parts of the syntax
where more than one option is available.

{} delimits syntax which may be repeated 0 or more
times.

[1 delimits optional portions of syntax.

<> delimits english explanations when syntactical
definitions are insufficient. For more information
on these portions of syntax, use the reference
manual.

- A word consisting of non-uppercase characters is an
abstract identifier representing a portion of the
legal syntax, usually mneumonically.

- A word consisting of uppercase letters is literal
text expected by the structure of the syntax at
that point. In practice, this text is not case
sensitive,.

The general language definition follows:

library ==
{module!l

module ==
module_header
declarations
statements

module_header ==
MODULE modulename [formal_arguments]! separator

formal_arguments ==
(arg_list)

declarations ==
{declaration separator}

declaration ==
INTEGER var_list |

LONG [INTEGER] var_list |
DATE var_list |
REAL var_list |
TEXT text_list

var_list ==
ident {,ident}

text_list ==
textvar {,textvar}

textvar ==
ident [OF [LENGTH] unsigned]

arg_list ==
identifier{,identifier}

ident ==
identifier{(dim_list)]

dim_list ==
unsigned{,unsigned}

statements ==
{statement separator}

statement ==
error_command |
file_command |
input_command |
output_command |
program_control |
miscellaneous

separator ==
<COLON> | <CARRIAGE RETURN>

error_command ==
RESUME [AT labell] |

RETRY |

SET option
file_command ==

CHD $ |

CHECK [fl [k] 1

CLEAR [f]l |

CLOSE [f] |

CoPY f1 [kl TO £2 [rl |
COPY STRUCTURE OF f [k] TO $
DELETE [f] (k] [r]l |

FIND [f] [k] [modl |

INSERT [(£f] |

LINK f1 [k] TO f£f2 expression |
LIST (£} [kl I[r] |

MARK [f] [kl (r}l |

OPEN $ [AS f] |

REINDEX [fl [k] |

UNLINK [f] |
UNMARK [f] (k1 [r] |
UPDATE [f] |
USE [f] [kl

input_command ==
ENTER fieldname {MASK S$1 |
INPUT var_list |
SET option

output_command ==
CLEAR FORM |
CLEAR LINE |
CLEAR SCREEN |
DISPLAY fieldname [MASK $] |
EJECT PAGE |
LOCATE nl,n2 |
PRINT print_list |
SET option

miscellaneous ==
EXECUTE § |
NOTE string |
SET option |
SHELL § |
[LET] let_list

program_ccntrol ==
call |

CASE
statements
{WHEN condition THEN
statements
ENDWHEN separator
statements}
ENDCASE |
CHAIN modulename [paramlist] |
END expression |
END |

EXIT |

10

GOSUB label |

RETURN |

GOTO label |

IF condition THEN statements [ELSE statements] ENDIF
LABEL label |

LOOP statements ENDLOOP |

QUIT |

REDO |

REPEAT statements UNTIL condition |

WHILE condition DO statements ENDWHILE

general_value ==
KEY |
MIN (expr_list) |
MAX (expr_list) |
variable |
fieldvalue |
all

date_function ==
TODAY |
DATE (expression)

numeric_function ==
ABS (n) |
ASCII ($) |
DUPLICATE (expression) |
EOF (f) |
ERROR |
INTEGER (expression) |
KEY PRESSED
LENGTH ($) |
LINE NUMBER |
LONG (expression) |
MARKED |
NOT |
PAGE NUMBER |
REAL (expression) |
RECORD |
ROUND (nl,n2) |
SIGN (n) i
SQRT (n) |

SUBSTR ($1,82) |
TRUNCATE (nl,n2) |
VALUE (%) |

text_function ==
CAPS ($) |
CHRS ($) |
GETKEY |
LEFTS ($,n) |
LIBRARYS (S) |
MIDS$ ($,nl,n2) |
PADCENTERS ($,n) |
PADRIGHTS ($,n) |
RIGHTS ($,n) |
SOUNDS ($) |
TEXT (expression) |
TRIMS ($) |
TIME

arithmetic_operator
+ =1 *1 /1

a9 |l

text_operator ==
+

boolean_operator ==
AND | OR | XOR

relational_operator =
= | EQ |

I GT |

| LT |

! GE |

| LE |

| NE

AN VAV

v

text_relational ==
BW | CT | SL

option ==
BOTTOM MARGIN TO n |
DATE TO §$ |
FOOTER label_opt |
FORM form_opt |
HEADER label_opt |
INPUT input_opt |
LEFT MARGIN TO n |
PAGE NUMBER TO n |
PRINT print_opt |
RIGHT MARGIN TO n |
SCREEN toggle_opt |

12

SINGLE toggle_opt |
TOP MARGIN TO n |
TRAP label_opt

label_opt ==
TO label | OFF

form_opt ==
TO $ | OFF
input_opt ==
FROM $ | ON | OFF
print_opt ==
TO $ | ON | OFF

toggle_opt ==
ON | OFF

mod ==
[APPROX] [expression] |
EXACT lexpressionl] |
FIRST |
LAST |
PREVIOUS |
NEXT |
RECORD n

rHh
i}
[}

FILE filetag

Fa
n
"

KEY keyname | NOKEY

la}
i}
]

range f{action}

range ==
ALL |
ALL FOR condition |
ALL WHILE condition |
PREVIOUS n [FOR condition | WHILE condition] |
NEXT n [FOR condition | WHILE condition] |
CURRENT

action ==
LOWEST expression TO variable |
HIGHEST expression TO variable |
COUNT TO variable |
TOTAL expression TO variable |
PRINT print_list |
LET let_list

print_list ==
{[print_expr] print_sep} [print_expr]

print_expr ==
expression | TAB(n)

print_sep ==
<SEMICOLON> | <COMMA>

let_list ==
assign {,assign}

assign ==
variable = expression

fieldvalue ==
FIELD (expression)

call ==

CALL modulename [paramlist]
paramlist ==

{expr_list)
expr_list ==

expression{,expression}
condition ==

n <THIS EXPRESSION IS INTERPRETED AS A BOOLEAN VALUE:

n=0 is FALSE, n<>0 is TRUE>

expression ==

nl $ 1 d | mask_expr
mask_expr ==

expression MASK § | (mask_expr)
n ==

int_const |

long_const |

real_const |

numeric_function |

general_value |

(n) 1|

n n_binary n
n_binary ==

arithmetic_operator |
boolean_operator |
relational_operator

14

text_const |
text_function |
general_value |
(s$) |

$ $_binary $

$_binary ==
text_operator |
boolean_operator |
relational_operator |
text_relational

d==
date_const |
date_function |
general_value |
(dy |
d n_binary d

filetag ==
identifier

modulename ==
identifier

label ==
identifier
variable ==
identifier | fieldname

keyname ==
fieldname

fieldname ==
[filetag.lidentifier

date_const ==
text_const <THE ENCLOSED TEXT MUST BE A VALID DATE>

text_const ==
"string" | 'string' <THE string MAY NOT CONTAIN AN
OCCURRENCE OF THE DELIMITER>
string ==

{<ANY ASCII CHARACTER EXCEPT NULL>}

int_const ==
[signlunsigned <ITS VALUE IN THE RANGE OF AN INTEGER>

15

long_const ==

[signlunsigned <ITS VALUE IN THE RANGE OF A LONG>

real_const ==
[signlmantissalexponent]

sign ==
+ 1 -

exponent ==
Elsignlunsigned

mantissa ==
unsigned(.unsigned] |
[unsigned.lunsigned

unsigned ==
digit{digit}

identifier ==
alpha{alpha | digit | <UNDERSCORE>

alpha ==
<ANY UPPER OR LOWER CASE LETTER>

digit ==
<THE TEN ASCII DIGITS (0 thru 9)>

16

<DOLLAR SIGN>}

APPENDIX E - OPERATOR PRECEDENCE

The following is a list of operator precedence in order of
least to most:

1. AND OR XOR

2. =, >, <, >=, <=, <>, BW, CT, SL, MASK
3. + -

4. * / &

5. all functions

17

are

APPENDIX F - EXTRA PEATURES

The following is a list of features and comments that
not mentioned in any other part of the documentation.

None of the following features are significant; they can all
be written in the standard ways used in other parts of the
documentation,

Looping structure

LET

Any of the start loop statements- LOOP, WHILE, and
REPEAT - can be matched with any of the end loop state-
ments - ENDLOOP, ENDWHILE and UNTIL - to define a loop.
For example:

LOOP

ENDWHILE
is valid. (This is exactly the same as a LOOP ...
ENDLOOP.) A WHILE ... UNTIL loop would then be valid and
it would have two conditions, one for the WHILE and one
for the UNTIL.

allows comma for multiple assignment

Another way of assigning a large number of values is
with the comma separator. For example:

a=0

b=3

c$="hello world"

could be written as:
a=0,b=3,c$="hello world"

Multiple statement lines usi colon (s

18

Statements which are normally written one per line can
be bunched up together using a colon to separate each
statement. For example:

a=0

PRINT a+7

PRINT a-7

could be written as:
a=0:PRINT a+7:PRINT a-7

Numeric expressions can be treated as conditions

Any numeric expression can also be used as a condition
in a WHILE, WHEN, IF, or UNTIL statement., If the value
of the numeric expression is 0 then the condition is
false. If the value of the numeric expression is not 0
then the condition is true. For example:

IF expression <> 0 THEN
can now be written
IF expression THEN

A common WHILE loop:
WHILE EOF(file tag) = 0 THEN
FIND NEXT
ENDWHILE
can now become:
WHILE NOT EOF(file tag) THEN
FIND NEXT
ENDWHILE

Conditionals can be treated as numbers

A conditional can be treated as a number. A conditional
expression which evaluates to TRUE has a value of one
while a FALSE expression has a value of zero. For
example:

PRINT MIDS$("YESNO",(a$ = "N") * 3 + 1,3)

19

APPENDIX G — COMPILER, CREATE AND INTERACTIVE
ERROR MESSAGES

Arithmetic operand expected
A numeric value was expected, check to see if quote marks
or a missing number is the problem.

CASE missing for control structure
A WHEN or ENDWHEN was used without the CASE statement
preceding it.

Close parenthesis expected
The number of open parentheses, "(", is greater than the
number of close parentheses, ")".

Comma expected
A comma was expected, check for syntax errors in the
statement.

DO clause expected in WHILE statement
A DO must follow the WHILE statement on the same line.

ENDCASE required to complete control structure
A CASE statement previously started the CASE structure
and the matching ENDCASE is missing.

ENDIF required to complete control structure
An IF statement previously started the IF structure and
the matching ENDIF is missing.

ENDLOOP required to complete control structure
A LOOP statement previously started the LOOP structure
and the matching ENDLOOP is missing.

ENDWHEN required to complete control structure
A WHEN statement previously started the WHEN structure
and the matching ENDWHEN is missing.

ENDWHILE required to complete control structure
A WHILE statement previously started the structure and
the matching ENDWHILE is missing.

Equals symbol (=) required in assignment statement
In an assignment the equals symbol is missing.

Error in record range specification

The range specification is incorrect, for example:
FIND ALL NEXT

20

FIELD, HEADER or KEY must start declaration
When defining fields and keys in a definition file, the
defining line must start with FIELD, HEADER or KEY.

FILE clause expected
The FILE file tag part of the file command is missing.

FILE must be first statement
The first statement in a definition file must be FILE
filename.

Filename must follow FILE statement
The FILE statement must be followed by the name of the
file.

IF missing for control structure
An ELSE or ENDIF was attempted before an IF statement was
seen,

Illegal file name format
The file name syntax is incorrect, see IDENTIFIERS.

Illegal label format
The label syntax is incorrect, see IDENTIFIERS.

Illegal variable format. Variable must start with a letter
and can contain only letters, numbers and the underline
character

The variable name broke the above rules, see IDENTIFIERS.

Incorrect number of parameters for function call
Too few or too many parameters are passed to a function
call, for example:
PRINT MIDS(as$,4,3,2)

Label already defined
An attempt was made to state a LABEL name that was al-
ready declared somewhere else in the module.

Label not defined for jump

A GOTO, GOSUB, ROUTE ERRORS TO, RESUME AT, SET HEADER TO,
SET FOOTER TO or SET TRAP TO statement is using a label that
doesn't exist.

LOOP missing for control structure
An ENDLOOP was encountered when there was no incomplete
LOOP structure,

Module expected

A MODULE statement must be followed by the module name
and an optional parameter list.

21

Module header required before any other program statements
A MODULE module name statement was not found before the
program statements were attempted.

No array dimensions or dimensions are not integer constants
An array variable must have at least one dimension and
the dimensions must be in the form of integer constants.

Open parentheses expected
An open parentheses character -"(", was expected for the
parameter list, function, etc.

Operand/operator type mismatch
The operator or the values with the operator do not
match, for example:
PRINT LEFTS(1,2)

Option word expected
The option part on a SET statement is missing, or spelled
incorrectly.

REPEAT missing for control structure
An UNTIL statement was encountered when there was no in-
complete REPEAT structure.

Statement not legal in interactive mode
Program control (IF, LOOP, GOTO, etc.) and variable dec-
laration statements are not allowed in interactive mode.

Syntax error, unrecognized use of command
The statement is too garbled to make sense of, check for
spelling mistakes, missing parts of commands, etc.

Terminator expected; illegal use of command
The statement was trying an illegal operation, for
example:
PRINT 3 NOT 4

TEXT constant expected for MASK
In a declaration file, the text following the MASK clause
must be a TEXT constant.

THEN clause missing in an IF or WHEN statement
A THEN must follow the IF condition or WHEN condition
statements.

To clause expected

A COPY or LINK statement has the TO part of its statement
missing.

22

Unbalanced arithmetic expression
The number of open parenthesis do not match the number of
close parenthesis, for example:
PRINT 3+(4*3

Unrecognized expression terminator
The expression finished in an incorrect manner.

Onrecognized module header format
The MODULE statement has syntax errors, or illegal
characters, etc.

Unrecognized separator
A separator was not found or is incorrect, for example, a
comma not found to separate items in a list of parameters.

Unterminated TEXT constant
A text string did not end with the double gquote or single
quote character it began with, for example:
PRINT "this is the

Variable already declared

A variable once declared in the module can not be
declared again in the same module, also a variable can not
be declared with the same name as a parameter.

Variable name cannot be a reserved word
The variable name can not be the same as an IMS statement
word, like IF, FIND, PRINT.

WHEN missing for control structure

An ENDWHEN was encountered when there was no incomplete
WHEN structure.

23

APPENDIX H - INTERPRETER ERROR NUMBERS

0 - No error
There is currently no error.

10 - Number used where text expected
A field or a parameter of numeric type was used in a
function that wanted a TEXT type.

11 - TEXT to DATE conversion impossible
A TEXT value used as a date value was incorrect. For
example:
date variable = "June 45,1234"

12 - TEXT value required for the function
A function expected a TEXT value but got something
else.

13 - A parameter not present
A module tried to use more parameters than it was
passed.

14 - Subscript out of range
An index value in an array was too high or too low for
the size of the array.

15 - Wrong number of subscripts
An array was used in a statement with too many or too
few subscripts or indexes. For example:
REAL singular(10)
PRINT sinqular(2,3)

16 - Integer required for the operation
An integer value is required for the operation, for ex-
ample the % operator.

17 - overflow during numeric conversion
Doing a INTEGER statement on a REAL value resulted in a
number above the integer's range.

18 - Date is out of range
The value specified is too high or too low for the
range of a date value.

19 - Divide by zero error
There was an attempt to divide by zero.

20 - No error trap active
A RESUME, RESUME AT, or RETRY statement was attempted
when not in an error trap routine.

24

21 - RETURN with no GOSUB
A RETURN was attempted with no previous GOSUB executed.

22 - Can't RESUME after error in END or RETURN

An error in an END statement or a RETURN statement was
trapped and in the error trap the RESUME was used to attempt
to continue execution. This is invalid.

23 - Out of memory

The module has run out of memory. Try running the
module with more memory (use the 0S9 command line option to
specify more memory).

24 - Illegal operator for the operand
There was an attempt to use an operator when the values
working with it were invalid. For example:
PRINT REAL(10) & 4
would be a REAL value in a "%" operation, which is invalid.

25 - Negative SQRT value
A negative value was passed to the SQRT (square root)
function,

26 - Not allowed when temporary value is on stack
An expression included a CALL statement to a module
which had one of the following statements:
UNLINK
OPEN
CLOSE
LINK
SET FORM TO
SET FORM OFF
CLEAR SCREEN
for example: a=b+c+CALL mod
MODULE mod
OPEN "maillist"

40 - Duplicate file tag
There was an OPEN statement using a file tag that had
already been used.

41 - Too many opened files
An OPEN was attempted when there was already the maxi-
mum files open.

42 - Error opening data file

The file specified in an OPEN statement could not be
opened because it was not present or not a data file.

25

43 - Error opening index file

The index file used with the data file when it is
OPENed was not present or did not have permission for read
and write.

44 - Field is not present
The field could not be found, check your spelling and
ensure that the correct files are OPEN.

45 - File tag not found
No OPEN file has this file tag.

46 -~ Incorrect key
The current file has no key with this name.

47 - Incorrect file operation with NOKEY
A FIND statement with the NOKEY key option was
attempted.

48 - valid data record required for operation
A file command was used on an invalid record. For
example:
DELETE RECORD 0

49 - File is already linked

A LINK was attempted on a file or a field in a file
which was already linked. See LINK in the reference
section.

50 - Error opening device

A SET command was used on a device which was not
present, incorrect for the operation, etc. It could also be
from an error is opening a file during a COPY statement.
Check to see you are in the correct directory.

51 - Hardware error in reading or writing

A hardware error occurred reading or writing on the
disk. This could indicate a defective disk or drive, disk
not present, etc.

52 - Module not found

A CALL or a CHAIN to a module cannot be executed be-
cause the module can not be found, it is of the wrong type,
or there is not enough memory.

53 - End of input file

End of file was reached during an INPUT statement.
This will only occur if the standard input path has been
rerouted with a previous SET INPUT FROM statement.

26

70 - Internal error
An error occurred signifying incorrect operation in

IMS. Please send a hardcopy of the situation, statements,
compiler 1listing and file data information that was used
when the error occurred to Clearbrook Software Group.

27

APPENDIX 1 -~ COMMAND LINE INVOCATION

The various programs which make up IMS can be executed
from the operating system prompt instead of from the main
menu. The syntax to do this is as follows:

Text editor
tx filel file2
or
tx filename
or
tx

where filel or filename is the text file to be edited and
file2 or filename are the default output file names.

Generate a data file
imsD filename [-1]

where filename is the file descriptor to generate one or
more data files. If the -1 option is selected, a listing of
the compilation will be produced.

Paint scr 0
imsF {database}

where {database} is a list of data base file names (without
extension) as generated from imsD.

Describe re t ma
imsR {database}

Invocation and syntax is identical to that for imsF.

Compile an IMS module
imsC sfilename [-1] [-o=ofilename]

where sfilename is the name of a text file containing IMS
module(s), the resulting compiled module will be a module
with the same file name, unless the -o= option is selected
in which case it's name will be ofilename. If the -1 cption
is selected, a compilation listing is produced. The output
file will be placed in the execution directory unless
ofilename begins with a /.

28

Execute a compil module
imsI filename

where filename is the name of a file
module(s).

Enter the interactive mode
imsi

Enter the CSG IMS executive

ims

containing compiled

29

APPENDIX J - PILE EXTENSIONS

IMS uses 4 character extensions at the end of files to
mark what the contents are. For example, file maillist.ida
is the data file for the maillist application. These exten-
sions are automatic and (except for the text editor) do not
need to be (and should not be) specified by the user.

The extensions are:

.ida data file

.iin index file

(no extension) compiled IMS module
.isc screen form

.ire report form

it is recommended that for clarity an extension of .imo
be used for a non-compiled program module and an extension
of .ide be used for data base definition files. Because
these are only recommendations, you will have to specify the
extension when you invoke IMS programs which use these
files.
EXAMPLES:

imsC menu.imo -o=menu

imsD customer,. ide

OPEN "customer"

SET FORM TO "customer"

30

APPENDIX K - DATA BASE CREATOR REFERENCE

The data base creator is the program used to define and
create data bases. The syntax of the specification language
it expects is not a separate language, but an extension of
the existing applications language. This extension is based
on the data type declarations. For a description of data
type declaration, refer to the section entitled Data Types
in the reference manual.

In the following definitions, the {} delimiters indi-
cate that the enclosed definitions may be repeated 0 or more
times, The [] delimiters indicate the enclosed optional
definitions. Definitions separated by "I|" indicate choice
of the definitions; one of the listed definitions must be
used. Upper case text indicates that that text is taken
literally, while lower case text is a descriptive tag for
some particular definition. The general syntax of a data
base descriptor file follows:

descriptor file = {database_declaration}

database declaration file_heading
{data_fields}

{key_fields}

file_heading = FILE identifier
data_fields = HEADER field |
FIELD field
field = declaration [mask] [alias]
key_fields = KEY declaration=expression [alias]
mask = MASK string
alias = ALIAS identifier
where

- declaration is the standard vari-
able declaration, defined in the syn-
tax summary (appendix D).

- expression is a standard general
expression, but restricted to field
variables and constant expressions.
See appendix D.

- string is a text constant as
defined in appendix D.

31

- identifier is a standard identi-
fier. Refer to appendix D for its
definition.

As indicated, the mask clause is opticnal. It is used
to define a mask to use with the ENTER/DISPLAY commands. If
this clause is missing, the mask defaults are assumed:

~ for INTEGER: "#####&"

- for LONG: "###sé####43"

- for DATE: "M d, Y" or the current date format

- for REAL: LY T2 22222 22 2 2 2

- for TEXT: "**x_ **" (to maximum length of the field)

If the clause is present, it supercedes the default mask.
This may be overridden by specifying a mask in the forms
editor, and this may be superceded by specifying a mask
clause in an ENTER/DISPLAY command,

The alias clause is a convenience feature. It is used
to specify an alternate name by which the associated field
may be referenced. Only one alias is allowed per field.
Its primary use is to have a self-documenting primary field
name, and also have an easily typed short alias name,

when the user invokes the database creator program on a
source file that conforms to the above specifications, two
files are created. These are: a data file and an index
file. Their names are taken from the file heading
identifier, the data file adding a .ida extension, and the
index file adding a .iin extension. These two files
together constitute a data base, and must be found together
in the same directory in order to be used. In any programs
referencing them, they are named as one unit using the file
heading identifier.

Both of the files of a data base have a well defined
structure. Each is composed of a dynamic number of records,
the structure of each record being identical to all others
in that file. This record is the base unit of information
the data management routines in the interpreter use. Each
record is in turn composed of a number of fields. For the
data file, these fields are the data fields defined in the
corresponding descriptor file, and for the index file, these
are the key fields defined in the descriptor file.

The structure of a database links the two files
together. They may in fact be said to be mutually
dependent. For each record in the data file, there is one
record for each key in the index file which is tied to it.
This relation exists because the index file in fact contains
the information on which the database is indexed (as the
name is supposed to suggest). Thus, the data file is used

32

to hold the data records and maintain the structure of the
database, while the index file references the data file
through an internal structure organized as a b_tree. This
approach to the structure of the database results in more
efficient use of computer resources, particularly when the
keys need to be used to find a data record.

EXAMPLE:
NOTE customer data file

FILE customer

NOTE keep some information about our company
HEADER TEXT company OF LENGTH 40
HEADER TEXT company_street OF LENGTH 30
HEADER TEXT company_city OF LENGTH 20
HEADER TEXT company_state OF LENGTH 3
HEADER TEXT company_zip OF LENGTH 9
HEADER TEXT company_phone OF LENGTH 10 MASK
T(REE) REE-REET
HEADER REAL company_sales MASK "###", ##4#.#8"

NOTE now the customer information

FIELD INTEGER customer_number MASK "##-##" ALIAS cno
FIELD TEXT name OF LENGTH 40

FIELD TEXT street OF LENGTH 30

FIELD TEXT city OF LENGTH 20

FIELD TEXT state OF LENGTH 3

FIELD TEXT zip OF LENGTH 9

FIELD TEXT phone OF LENGTH 10 MASK "(#§#) ###-4%#"
FIELD DATE last_activity

FIELD REAL purchases(l12) MASK "#&#",##%. %"

FIELD LONG credit_limit

FIELD TEXT terms OF LENGTH 10

NOTE this completes the fields
NOTE now we define the keys

KEY INTEGER number = customer_number ALIAS cno
KEY TEXT name OF LENGTH 30 = CAPS$(name)

33

APPENDIX L - TEXT EDITOR REFERENCE

Tx is a general text editor that is designed to make
alteration of text easy. It is a stand alone program, but
is included with IMS for editing IMS source files. This
text editor makes editing a great deal easier than with a
word processor, and users will soon become used to its
simple but powerful operation.

When tx is invoked, it loads the first file specified
on the command line. If there is no file, the editor comes
up with a blank screen with one carriage return, If a
second file was specified, that file will be the default
write file.

When the editor begins, the screen will display the
first lines in the file. This display takes the following
format: lines which are longer than the display wrap around
to the next line. No word wrapping is supported, since this
editor is intended as a simple program editor. The end of a
text line (I,E. - a carriage return) is marked with a <
character in some other intensity than the text line, If
there are n rows on your screen, the text editor will dis-
play text on the first n-1 rows. This allows the bottom row
to be used as a status line, or to display prompts and sub-
menus, and report errors.

The initial mode of the text editor is text insertion.
Wherever the cursor resides, if a printable character is
typed, it is inserted into the text at the position of the
cursor, and the screen is immediately updated. 1In order to
move the cursor, single control codes must be typed. These
are outlined below. In order to perform more complex
operations, such as loading a file or finding a string of
text, another mode must be entered. In these other modes,
the user can do no insertion of text.

The complete list of operations of the text editor fol-
lows below. (Note, the " symbol indicates that the control
key is held down while the following character is pressed.
So “P means hold down the control key and press the P key,
~* would be control up caret, etc.)

Abort Action “A,ESC
This will stop any current action; for example, it will
terminate a FIND, BLOCK, SAVE etc., operation and go
back to the editor. NOTE: in insertion mode, ESC is
used to select the I/0 submenu,

34

Cursor keys

Start HOME or

End

Next

CURSOR UP, “K

This will move the curscr up one line.
CURSOR DOWN, “J

This will move the cursor down one line.
CURSOR LEFT, “H

This will move the cursor left one character.
CURSOR RIGHT, “L

This will move the cursor right one character.

an

If the cursor is not at the start of a line then HOME
will put the cursor there. Then another HOME will move
the cursor to the first line of the screen. Another
HOME will move the cursor to the first character of the
file.
“B

If the cursor is not at the end of a line then “E will
put the cursor there. Then if another "E is used the
cursor will move to the last line of the screen,
Another “E will move the cursor to the last character
of the file. In other words, three “BE's are usually
necessary to go to the end of the file.

screen “N
This will move the cursor to the next screen of text.

Previous screen P

This will move the cursor to the previous screen of
text.

BLOCK “B

This will display the following menu:
?,Help Cut Duplicate Paste Write

The various options are selected by typing the first
letter of the word you want. These options act on a
block of text which the user selects in this mode. The
block is defined by using any of the previous movement
commands.

cuT

This will delete a defined block from the text and
put it in the block buffer, erasing what was in the
block buffer before. Before this operation is used a
block area must be defined. The start of the block is
where the cursor was when the "B was pressed. The end
of the block is the location of the cursor when the CUT
option is chosen, Note that as you move the cursor the
defined block is marked with low intensity or reverse

35

video.,

DUPLICATE

This will take a defined block that has been
marked and put it in the block buffer, leaving the
block itself in place. Before this operation is used a
block area must be defined. The start of the block is
where the cursor was when the "B was pressed. The end
of the block is the location of the cursor when the
DUPLICATE option is chosen. Note that as you move the
cursor the defined block is marked with low intensity
or reverse video.

WRITE
This will give the prompt:

WRITE; file to save to:

You can then give the name of a file. If the file al-
ready exists, the computer will prompt:

Rewrite or append ? (R*/A)

Pressing the R key will mean that the block buffer will
be written to the stated file, destroying anything else
in the file. Pressing the A key will add to the file
the block buffer contents. If the file did not exist
it will create the file and write the block buffer to
it.

PASTE

This will insert the contents of the block buffer,
defined by a COT or DUPLICATE operation, at the current
cursor location,

?,HELP
This will display a help screen giving the impor-
tant details of the editor.

Delete character DEL
The DEL key deletes the character on the left of the
cursor.

Delete cursor character “D
Delete the character underneath the cursor.

Undelete Character Y
The DEL and "D operations both delete a character from
the text, and store the characters in the delete
buffer. Doing a “U causes the most recently deleted
character to be put at the current cursor position.

36

Line

Another ~“U would cause the next character in the delete
buffer to appear at the current cursor position, etc,
delete “X
This will delete the entire line that the cursor is
currently on, up to and including the carriage return.
If the line the cursor is on is the last one in the
file, the command is ignored.

Find/Replace P

This is for finding and replacing text. “F will set
the status line menu to:

?,Help Line Define Next Previous

The various choices are selected by pressing the first
letter of each word. The choices are explained below:

DEFINE
Here you will get the prompt:

DEFINE; text to find:

as the computer waits for you to type in the text for
the find or replace. Because case is not important,
type in the text in any case. The computer will then
prompt:

Find all occurrences ? (Y/N¥*)

Here a Y response signifies that all occurrences in the
text will be found 6r replaced. A N response indicates
that only one occurrence is to be found or replaced.
After this, the computer prompts:

Replace text ? (Y/N*)

A N response indicates that a Find with no replace
operation is wanted. The FIND menu will the be
redisplayed. If a Y is entered to the prompt then a
Find with replace operation is wanted. The computer
prompts:

Replacement text:

and the user can then enter the text to replace the to
find text. The FIND menu will then be redisplayed.

NEXT

This does a Find/Replace in the forward direction
from the current cursor position, based on the informa-
tion given in a previous FIND - DEFINE operation.

37

PREVIOUS

This does a Find/Replace in the backward direction
from the current cursor position, based on the informa-
tion given in a previous FIND - DEFINE operation.

LINE
This gives the prompt:

FIND LINE; line number:

The user then types in a line number, one or dJgreater,
of the line to find. If the line number is out of
range of the file, then the prompt is redisplayed.
Otherwise that line is displayed as the top line of the
screen, with the cursor at the first character in the
line,

?,HELP
This displays a help screen, giving the important
facts about the text editor.

Input/output ESC

38

This displays the menu on the status line.
?,Help Indent Pass Save Load Clear Quit

To select one of the options type the first character
of the word, or a question mark for HELP. The options
are explained below:

INDENT

when this selection is toggled on, the text editor
will automatically indent any subsequent new line typed
by the user by the number of spaces on the previous
line.

PASS
This gives the prompt:

PASS; Command to pass:

Here the editor is waiting for an operating system
command. For example, DIR would be an operating system
command which would do a directory. (See your operat-
ing system manual for legal commands.)

SAVE
This gives the prompt:

SAVE; save as file ? (Y*/N)

where file is the filename specified when the text
editor was started. Typing Y will save the text in
this file. Answering N will cause the following prompt
to be displayed:

SAVE; file name:
Whatever name the file is saved under, the text editor
will automatically make a backup of any file it

overwrites.

LOAD
This gives the prompt:

LOAD; file to load from:
Here you can type in the name of a file, and if it ex-
ists it is loaded into the text at the current cursor
position.

CLEAR
This will give the prompt:

CLEAR; are you sure? (Y/N¥*)

A Y response will delete all the text in the editor. A
N response will cancel the CLEAR command.

QUIT
This gives the prompt:

QUIT; are you sure? (Y/N%*)
If you type Y, the text editor finishes and all changes

since the last SAVE are lost. N cancels the QUIT
command.

39

Here is a synopsis
Abort action

Block Operation
Cut C
Duplicate D
Write W
Paste P
Help ?

Cursor control
Up one line
Down one line
Left one character
Right one character

Deletion
char left of cursor
char under cursor

“A,ESC

>

>

>

[l "<

or
or
or
or

cursor
cursor
cursor
cursor

of the special keys for the text editor.

up
down
left
right

entire line

End
End of line
End of screen
End of file

Find/Replace
Define
Forward
Backward
Line
Help

Input/Output
Indent
Save
Load
Clear
Quit
Help

Next page
Previous page

Start
Start of line

Start of screen

Start of file
Character undelete

40

b

WMo
o]

[N oNaNalOR RG]
w
@]

o+

>

2

>

vl

HOME or
HOME HOME or
HOME HOME HOME or

An AA

AA An

“u

APPENDIX M - FORMS EDITOR REFERENCE

The forms editor is a flexible, powerful method of
creating and modifying single screen forms which allow for-
matted interactive I1I/0 with one or more data files,

To invoke the forms editor, type imsf followed by a
list of the data base files you need to access from the
form, If you had a customer file and an invoice file and
you needed information from both, type:

imsf customer invoice

Once the forms editor is invoked with the desired data
base file names, no more files may be included in that form.
When the program begins, a blank screen is presented to the
user, with the coordinates of the cursor being displayed on
the bottom line. The bottom line of the display is reserved
at all times for showing information; it is not accessible
to the user. At this point you can move around the screen,
place text and insert and delete lines and characters. In
addition, boxes may be drawn anywhere on the screen, and
fields from the data records may be placed on the screen.

There are, of course, a few restrictions. Text cannot
be placed over box borders or on fields. Fields and box
borders cannot overlap. Aside from these restrictions, the
screen can be arranged in an entirely free format.

The complete list of operations in the forms editor
follows below. (Note that © in front of a character is
viewed as the control code represented by that character.)

Abort Action “A,ESC
This will terminate any action immediately. Since the
ESC key is used to select the I/0 actions, it is not
active during text entry.

Cursor Keys

~

CURSOR UP K
Cursor moves up one line
CURSOR DOWN -

Cursor moves down one line
CURSOR LEPT “H

Cursor moves left one character
CURSOR RIGHT L

Cursor moves right one character

41

Next Line M
The cursor will be moved to the start of line below the
line the cursor is currently on.
Start HOME or ~°
If the cursor is not at the start of a line, HOME will
put the cursor there. Otherwise the cursor will be
placed at the top left corner of the screen.

-~

End E
If the cursor is not at the last column in the line, “BE
will place it there. Otherwise the cursor will be

placed at the bottom right corner of the screen.

Delete Character DEL
Pressing the DBL key will delete the character on the
left of the cursor, shifting the remainder of the text
and fields to the right of it left one character. 1If a
box border intersects that line, the text and fields
are shifted only up to that box.

Delete Cursor Character “D

This deletes the character the cursor is over. The
text and fields are again shifted as explained for DEL
above.

Delete Line X
This removes the line the cursor is currently on,
moving the text, fields and boxes below that line up
one line, It will not allow fields or boxes to be
deleted from the screen.

Insert Character “C
This shifts the text from the cursor to the first box
border or end of the line to the right by one
character. A space is inserted at the cursor. “C is
the complement action to “D.
Insert Line "1
This shifts all text, fields and boxes below the cur-
rent line down by one line. A blank line is then in-
serted in the current line. It will not allow fields
or boxes to be shifted off the screen. “1 is the
complement action to “X.

42

Pield Access °F
The following menu will be displayed when “P 1is
pressed:

?,Help Add Delete Mask Info

The options are then selected by pressing the key of
the first letter of each word.

Add

Selecting the add option allows the user to add a
data record field to the screen form. When a field is
selected, it will be displayed on the screen as the
mask for that field in half-intensity or reverse video.

When the add option takes control, it will present
the user with a list of all fields available. They
will be presented as the data base creator declaration
for that field, one field per line. If there are more
fields than display lines, only the first field decla-
rations will be displayed. To select a field, the up
and down cursor keys may be used to move the cursor
over top of the desired field; if there are more fields
than lines, the display will be scrolled to allow
access to all fields. When the cursor 1is on the
desired field, RETURN or ENTER must be pressed. This
will select the field and return to text entry.

Delete
For this option to work, the cursor must be on a
field. 1If it is, the computer will prompt:

DELETE; are you sure ? (Y/N¥*)

Answering Y will deselect it and remove the mask from
the screen. :

Mask

For this option, the cursor must be on a field.
If it is, it will allow the user to specify a different
mask to be used. The computer will prompt:

MASK; new string:

The mask is not accepted if it overlaps borders or
fields.

Info

This option displays the data base creator decla-
ration of the selected field which the cursor is on.
It also displays the coordinates of where on the screen
the field starts.

43

?,Help
This will display help screen giving important
details of the forms editor.

Box Drawing B

This will display the following menu:
?,Help Draw Erase

The various options are then selected by pressing the
first character of each word. The options are:

Draw

With this option, the user can draw a box almost
anywhere on the screen. The upper left corner of the
box will be where the cursor was on the screen when
this option was selected. To define the limits of the
box, the user then moves the cursor around using any of
the cursor movement Kkeys. The bottom right corner of
the box is defined as being the current position of the
cursor. To draw the box with those limits, RETURN or
ENTER must be pressed.

Erase

This option allows any box on screen to be
removed. In order to work, the cursor must be anywhere
in the border of a box. The computer will then prompt:

ERASE; are you sure ? (Y/N¥*)

Answering Y will erase the box, and an answer of N will
cause the request to be ignored.

?,Help
This will display help screen giving important
details of the forms editor.

Input/Output ESC

44

Selecting this option will display the menu:
?,Help Pass Clear Quit Save Load Output Generate

To select an option, press the letter the word begins
with. The various options are:

Pass
This allows a command to be passed to the operat-
ing system for processing. The computer will prompt:

PASS; command to pass:

Clear
This option will delete all the text on the
screen, erase all boxes, and deselect all fields.
Before doing so, the computer will prompt:
CLEAR; are you sure ? (Y/N%*)
Answering N will cause the clear option to be ignored.

Quit
The computer will prompt:

QUIT; are you sure ? (Y/N¥)

Answering Y will terminate the current session of the
forms editor. Answering N will cancel this option.

Save
This will give the prompt:

SAVE; file name:

The desired name of the screen form should be typed in.
If the file already exists, the computer will prompt:

Rewrite ? (Y/N¥)

Answering Y will replace that file with this screen
form. A N response will cancel the save.

Load
This will give the prompt:

LOAD; screen form file:

Type the name of the screen form desired. The forms
editor will then load it in, forgetting all previous
text typed, boxes drawn and fields selected. Note that
this new form must have been made with the same data
files as were selected for the current forms editor
session.

Output
This will display the prompt:

OUTPUT; destination device:
This option will write an image of the screen and a
list of the selected fields to the cspecified
destination,

Generate

45

46

Selecting this option will cause the forms editor
to generate a simple program in the applications lan-
guage which will use any screen form desired and data
files specified when the current session of the forms
editor was invoked. It will allow simple entry, edit-
ing and maintenance of the data files. For a complete
description of this generated program, refer to lesson
one in the tutorial. When this option is selected, the
computer will prompt:

GENERATE; name of output file:
If there is more than one data file, the program will
allow entry of data into only one of the data files;
thus the computer will prompt:

Primary data file:
The primary data file is the one you wish to maintain.
The program generator will generate ENTER statements
for fields in this file and DISPLAY statements for
fields in other files,

Finally, the computer will prompt:
Form to use:

You should enter the name that you gave the form when
you SAVEd it.

?,Help
This will display the help screen giving important
details of the forms editor.

APPENDIX N - REPORTS EDITOR REFERENCE

The reports editor is a program which allows a user to
define a report in a highly visual and interactive fashion.
The user "paints" the format of the desired report on the
screen in a manner very similar to the forms editor. This
format, known as a report form, may be saved, then loaded at
a later session and edited.

In order to perform the report as defined by a report
form, the user must generate a program to do the task. This
program is generated by the reports editor in the CSG IMS
applications language (you will need to compile it), which
allows the user to customize a report. The report generated
by the reports editor is sufficiently powerful to accomplish
most reasonable tasks without the need to modify the gen-
erated report.

The report editor is invoked in a way similar to the
form editor. The command name is followed by a list of data
files which the report will access.

imsR customer invoice detail

This will invoke the report editor. The report can print
any information from the files customer, invoice or detail.

The reports editor begins with a blank report form. If
the user has saved a previous report form, it may be loaded
at this point. A report form as represented on the screen,
has a clearly defined structure. It consists of several
sections; each section has a heading which is highlighted in
some manner, Immediately following this heading, which oc-
cupies an entire line, the user may insert and delete lines,
for purposes of displaying text and fields.

These sections are:

HEADER - page header definition (printed at
the top of each page).
FOOTER - page footer definition (printed at

the bottom of each page).

PRIMARY FILE - data listing format definition for
the primary file.

PRIMARY SUBTOTALS - definition of subtotals format
for the primary file.

TOTALS - definition of totals reporting
format. Printed at the end of the
report.

END OF REPORT - end of report form marker.

47

When there are multiple data bases, and the user has
linked two or more of them together, for each linkage the
PRIMARY FILE and PRIMARY SUBTOTALS sections are duplicated
and appropriately identified.

Once the reports editor has started, the user may move
the cursor about using the commands described below. Text
and fields may be entered in any non-heading lines desired
(a non-heading line is inserted with the "I key). Each sec-
tion represents a portion of the report as it will be
printed out by the generated program. The report form
(except for the highlighted headings) in fact represents a
partial page as it will appear on the printer. For that
purpose, there is a line length of 192 characters. Text
which appears in each section is, at runtime, printed at the
column where it starts in the report form. Likewise with
fields.

When the generated report is processing a record from
the primary file, it prints it according to the format given
by the PRIMARY FILE section. All records with the same key
are printed before subtotals are printed as defined in the
PRIMARY SUBTOTALS section. This entire process is repeated
for all records in the data base.

If there are secondary files which have been linked,
they are processed in an almost identical fashion to that
just described for the primary file. The primary difference
is that secondary files are implicitly indexed through a
LINK statement. If there is a file secondary to this one,
the process is again applied, in a recursive fashion. By
this method, it is possible to have an arbitrary depth of
file-linkage hierarchy.

The keystroke commands the reports editor accepts are
described below. Note that a caret placed in front of a
character indicates the corresponding control character.
I.E. - "M is CARRIAGE RETURN or M typed when the CTRL key is
being pressed down.

Abort Action “A,EBSC
This will terminate any action immediately. Since the
ESC key is used to select the I/O actions, it is not
active during text entry.

Cursor Keys
CURSOR UP K
Cursor moves up one line
CURSOR DOWN 3
Cursor moves down one line
CURSOR LEFT “H
Cursor moves left one character

-~

48

~

CURSOR RIGHT L
Cursor moves right one character

Next Line M

Start HOME or

End

The cursor will be moved to the start of line below the
line the cursor is currently on.

an

If the cursor is not at the first column of the screen,
HOME will will place it there. Otherwise, if the cur-~
sor is not at the top left corner of the screen, it
will be placed there., Otherwise, if the cursor is not
in the first column of the current line, it will be
placed there. Finally, if none of the above cases is
true, the cursor will be placed in the first column of
the first line of the report form.
i
If the cursor is not at the last column on the screen,
“E will place it there. Otherwise, if the cursor is
not at the bottom right corner of the screen, it will
be placed there. Otherwise, 1if the cursor is not on
the last column (column 192) of the current line, it
will be placed there. Finally, if none of the above
cases is true, the cursor will be placed in the last
column of the last line of the report form.

Delete Character DEL
Pressing the DEL key will delete the character on
the left of the cursor, shifting the remainder of
the text and fields to the right of it left one
character.

Delete Cursor Character “D
This deletes the character the cursor is on. The
text and fields are again shifted as explained for
DEL above.

Delete Line “X
This removes the line the cursor is currently on,
moving the text and fields below that line up one
line. It will not allow fields to be deleted from
the form.

Insert Character e
This shifts the text from the cursor to the end of
the line to the right by one character. A space
is inserted at the cursor., This is the complemen-
tary action to “D.

49

Insert Line 1
This shifts all text and fields below the current
line down by one line. A blank line is then in-
serted in the current line, This is the com-
plementary action to “X.

Change Borders °“B
This displays the following menu:

?,Help Left Bottom

Left
This displays the prompt:

01d value for left margin=n. Enter new
value:

At this point the user may enter a new value for
which column on the printer the left margin is to
begin. Typing the RETURN or ENTER key leaves the
value unchanged.

Bottom
This displays the prompt:

0l1d value for bottom margin=n. Enter new
value:

At this point the user may enter a new value for
which row on the printer the bottom margin is to
begin. 1t defines where the footer begins on the
page. Typing the RETURN or ENTER key leaves the
value unchanged.

?,Help
This will display the help screen giving im-
portant details of the forms editor.

I/0 Commands ESC
This displays the following menu:

?,Help Pass Save Load Clear Quit Gener-
ate

To select an option, press the letter the word
begins with. The various options are:

Pass

This allows a command to be passed to the
operating system for processing. The computer
will prompt:

PASS; command to pass:

Clear

This option will delete all the text on the
screen, erase all boxes, and deselect all fields.
Before doing so, the computer will prompt:

CLEAR; are you sure ? (Y/N¥)
Answering N will cancel the clear option.

Quit
The computer will prompt:

QUIT; are you sure ? (Y/N¥*)

Answering Y will terminate the current session of
the forms editor. Answering N will cancel this
cption.

Save
This will give the prompt:

SAVE; file name:

The desired name of the report form should be
typed in, If the file already exists, the com-
puter will prompt:

Rewrite ? (Y/N¥*)

Answering Y will replace that file with this
screen form. A N response will cancel the save.

Load
This will give the prompt:

LOAD; report form file:

Type the name of the report form desired. The
reports editor will then load it in, forgetting
all previous text typed and fields selected. Note
that this new form must have been made with the
same data files as were selected for the current
reports editor session.

51

52

Generate

Selecting this option will cause the reports
editor to generate a program in the applications
language which will, when compiled and invoked,
print out a report based on the information given
in the currently loaded report form. This program
will contain all the necessary code to print a
report after the module is compiled. The program
is generated such that it is modular and easy to
modify if the user so wishes. For a complete
description of this generated program, refer to
lesson one in the tutorial.

When the GENERATE option is selected, the
computer will prompt:

GENERATE; name of output file:
The computer will then ask:
Index the primary data base ? (Y*/N)

Answering N will cause the primary data base to be
traversed in sequential record number order.
Answering Y will cause a number of further
requests by the computer.

The first is that the user must select a key
by which the data base will be indexed. This is
done with a selection list, which is described
more completely in the Function Menu section.
Secondly, when the key is selected, the user must
type an expression which that key must match
exactly.

The generation of the program will then
procede. Remember to compiler the program before
trying to execute it.

?,Help
This will display the help screen giving im-
portant details of the forms editor.

Punction Menu “F

This is a somewhat more complex menu command.
Exactly what menu is displayed depends on what
sort of line the cursor is in. Additionally,
there are several levels of menus. Once a primary
menu has come up, the desired option is selected
by typing the first character of that word.
Secondary menus are treated identically to primary
ones; they are displayed and used in the same

manner. In the following descriptions, the
primary menus are outlined, then secondary menus,
and finally the various options in those menus are
explained. Additionally, selection lists are
defined at the end of this section.

Primary Menus

If the cursor is in a HEADER, FOOTER, PRIMARY
SUBTOTALS or END OF REPORT heading line, “P has no
effect; it is ignored.

If the cursor is in a PRIMARY FILE heading
line, the following menu is displayed:

?,Help Link Remove

If the cursor is in the TOTALS heading, the
following menu is displayed:

?,Help Link
If the cursor is in the text portion of the
HEADER or FOOTER sections, the following menu is
displayed:
?,Help Number Today Print Sum Delete Mask Info

If the cursor is in the text portion of a
PRIMARY FILE section, the primary menu is:

?,Help Print Delete Mask Info

If the cursor is in the text portion of a
SUBTOTALS or the TOTALS section, the primary menu
is:

?,Help Print Sum Delete Mask Info

Secondary Menus

Selecting Link allows the user to define
secondary files to which the primary file is
linked. The reports form editor in fact supports
any arbitrary complexity and depth of file
linkage, not just to a secondary file. This is
currently the only secondary menu option. Its
menu is:

?,Help Prime Second Key Expr Done

53

54

Options

Number

This option will place a mask of "###" on the
screen where the cursor is. When the generated
report is executed, the current page number will
be printed out. It is treated identically to a
data field.

Today

This option is similar to the Page option,
with the difference that the current date 1is
printed, rather than the current page number.

Print

This option allows the user to place a field
where the cursor resides in the report form. This
is done with a selection list (explained more com-
pletely below), where each item in the list is a
data field displayed in the format in which it was
declared in the data base descriptor file. In the
generated report, this field will be printed out
at the appropriate time in the column it was
placed on in the report form.

Sum

This option operates identically to the Print
option in the way in which a field is selected.
It allows the user to define a field which will be
summated. The result of the summation will be
printed out as described in the Print option. If
the cursor is in a SUBTOTALS section, after the
result of a summation is printed, it will be
reinitialized to 0. NOTE: summing a TEXT or DATE
field will do a count of the number of records.

Delete
For this option to work, the cursor must be
on a field. 1If it is, the computer will prompt:

DELETE; are you sure ? (Y/N¥*)

Answering Y will remove the mask from the form.
Answering N will cancel the option.

Mask

For this option, the cursor must be on a
field. If it is, it will allow the user to
specify a different mask to be used. The computer
will prompt:

MASK; new string:

The mask is not accepted if it overlaps any
fields.

Info
This option displays the data base creator
declaration of the field which the cursor is on.

Prime

This option allows the user to select which
file of those loaded will be the primary data base
in a LINK statement. It does this with a selec-
tion list, where each item in it has the form:

FILE filename

where filename is the name of the data base. If a
primary file has already been selected, it is
identified.

Second

This option operates identically to the Prime
option, except that it allows the user to select
which file will be secondary to the primary file.

Key

Selecting this option allows the user to
specify by what key the secondary file will be
indexed. This is done with a selection list, in
the same manner as the Print option. If a key has
already been selected, it is identified.

Expr

This option will prompt the user for an ex-
pression made of data fields of the primary file
with the following query:

Search expression:

This expression will be used in a LINK statement,
in order to exactly match the key in the secondary
file. 1If an expression has already been entered,
the computer will first prompt:)

Replace "expr" (Y*/N) ?
where expr is the previous expression.
Done
This option will install the information
given in previous Prime, Second, Key, and Expr
options., This installation takes the form of two

55

56

new sections being created; one displays the
linkage information, the other displays the title
SUBTOTALS. These are a replication of the PRIMARY
FILE and PRIMARY SUBTOTALS sections in function.
If the information is incomplete or not permis-
sible because of circular file linkages, this op-
tion will be cancelled.

Remove

This option will remove the file linkage that
the cursor is over. If the cursor is on a valid
linkage definition the computer will prompt:

REMOVE; are you sure ? (Y/N¥*)

answering Y will remove it, answering N will can-
cel the request to remove the file linkage.

?,Help
This will display help screen giving impor-
tant details of the forms editor.

Selection Lists

A selection list is a method of querying the
user for a specific item from a sometimes random
or dynamic list of items. The items in the list
are displayed in a column, one item per row. If
there are more items than rows, the user may
scroll through the list to the unlisted portions
of the selection list.

Items in the list may be marked. If an item
is not in normal video, it is not selectable.
Otherwise, it may be selected.

To select an item, the cursor must be placed
on the desired item, at which point the RETORN or
ENTER key must be pressed. To place the cursor on
that item, it is moved down the list with the CUR-
SOR DOWN key and up the list with the CURSOR UP
key.

APPENDIX O - IMPORTING DATA

Data imported by IMS must be in the form of ASCII text.
To import the data, a short IMS module will have to be
written. Examples of two different methods are:

1. Each text line contains one piece of data. This is a

common method used for mailmerge
and would look like:

John Doe

123 Main Street

Anywhere

usa

00000

Clearbrook Software Group
446 Harrison Street

PO Box 8000-499

Sumas

WA

USA

98295

files for word processors

Here each "record"” consists of 7 1lines (records) of
text. A general purpose program to import this type of data

would be:

NOTE A program to import data from a text file
NOTE in which each line is a data field. Up to
NOTE 40 fields per record can be read.

MODULE importlines

TEXT fields(40) ,none,file

INTEGER i,lines

PRINT "Enter the name of the IMS file to import

to: ";
INPUT file
OPEN file

PRINT "Enter the name of the text file to import

from: ";

INPUT file

REPEAT

PRINT "How many lines in each text file

57

58

INPUT
UNTIL lin

LIST STRU

i=0;

WHILE i<1
i=i+1
PRINT

record? ";
lines

es>0 AND lines<=40

CTURE

ines DO

"To which field (name) does line ";i;

"correspond to (type NONE if none)?

INPUT fields(i)

ENDWHILE

SET INPUT
SET INPUT

LOOP
i=0
WHILE

FROM file
ON

i<lines DO

i=i+l
IF CAPS(TRIMS$(fields(i)))="NONE" THEN

ELS

END

INPUT none

E

INPUT field(fields(i))
IF

ENDWHILE

INSERT
ENDLOOP

END

LABEL trap

NOTE this

is the error handler

IF ERROR=53 THEN NOTE end of input file

PRINT
ELSE

"Finished"

HELP ERROR

RESUME
ENDIF

END

.
’

2, Each line of the text file is a record, the fields of
each record start at a fixed offset from the beginning of
the record. Fields are a fixed size.

John Doe 123 Main Street Anywhere USA 00000
Clearbrook Software 446 Harrison St. Sumas WA USA 98295

Here each "record" consists of 1 line of text. A
general purpose program to import this type of data would
be:

NOTE A program to import data from a text file
NOTE in which each line is a record. Up to
NOTE 40 fields per record can be read. The
NOTE text line may be no longer than 255

NOTE characters.

MODULE importline

TEXT fields(40) ,none,file
TEXT line OF LENGTH 256
INTEGER offset(40) ,fsize (40)
INTEGER i,flds

PRINT "Enter the name of the IMS file to import
to: ";

INPUT file

OPEN file

PRINT "Enter the name of the text file to import
from: ";

INPUT file

LIST STRUCTURE
f1ds=0;
WHILE f1lds<40 DO
flds=flds+l
PRINT "What is the name of IMS field number ";
flds;", press ENTER when done: ";
INPUT fields(flds)
IF fields(flds)="" THEN
flds=£flds-1
EXIT
ENDIF
PRINT "In which column does ";fields(flds);
" start (1 is first)? ";
INPUT offset(flds)
PRINT "What is the size of the field? ";
INPUT fsize(flds)

59

60

ENDWHILE

SET INPUT FROM file
SET INPUT ON

LOOP
i=0
INPUT line
WHILE i<flds DO
i=i+l
field(fields(i))=MIDS(line,offset (i),
fsize(i))
ENDWHILE
INSERT
ENDLOOP

END

LABEL trap
NOTE this is the error handler

IF ERROR=53 THEN NOTE end of input file
PRINT "Finished"

ELSE
HELP ERROR
RESUME

ENDIF

END

APPENDIX P - Exporting Data

Exporting data to ASCII text files is an easier
proposition than importing data. Quite simply, the reports
form editor may be used to create both type of import files
described in the previous section.

1. To create text files having one piece of (left
justified) data per 1line, invoke the reports form editor
with the data base file name from which you wish to export
data. Next, create a report form which has no headers,
footers, totals, or subtotals, and the left and bottom mar-
gins having a value of 0. 1In the PRIMARY FILE section, in-
sert as many lines as fields you wish to export, then place
one field, left justified, on each line. After this is
complete, you should save the report form. Then simply gen-
erate a report program. This program, when compiled, will
export the data to any file you specify at runtime.

2. To create text files where the data is stored one
record per text line, and the data fields are column aligned
fields in the text line, repeat the procedure describe
above, with the following difference. In the PRIMARY FILE
section insert only one line and place the fields on this
line as opposed to aligning them vertically. This program,
when compiled, will export the data to any file specified at
runtime,

6l

CLEARBROOK SOFTWARE GROUP INC.
SOFTWARE LICENSE AGREEMENT

LICENSE: Clearbrook Software Group Inc. owns the enclosed
software program and all copyrights and other rights to it.
Clearbrook Software Group Inc., grants you a non-exclusive
license to use the enclosed software program subject to the
terms and restrictions below,

RESTRICTION OF USE: You may use the program on a single
computer. In a computer network, a separate license is
required for each computer in the network on which the
software is to exist. You may modify the program or merge
it into another program but all such portions remain subject
to the restrictions of this license.

RESTRICTION ON COPYING: You may copy the program for back-up
or archive purposes provided you include the copyright
notice and serial number on the copies. You may not copy
any part of the documentation for this program.

RESTRICTION ON TRANSFER: You may physically transfer the
program from one computer to another provided that the
program is used on only one computer at a time. You may
transfer this license as long as the person to whom you
transfer receives all copies of the program and documenta-
tion and agrees to be bound by the terms of this license and
notifies Clearbrook Software Group Inc., in writing.

TERM: This license continues in effect until terminated.
You may terminate the license by destroying all copies of
the program and documentation and notifying Clearbrook
Software Group Inc. in writing.

LIMITED WARRANTY: If you send the Registration Card to
Clearbrook Software Group, free updates will be provided to
you for a period of one year from the date of purchase., It
is your responsibility to notify Clearbrook Software Group
Inc. of any defect you find in the program so that we may
correct the defect and send you an update. After a period
of one year from the purchase date, updates must be pur-
chased for $10US plus shipping charges.

LIMITATION OF LIABILITY: Clearbrook Software Group Inc., will
not be liable for any direct, incidental or consequential
damages resulting from the use of the program.

Your use of the program or completing and returning the
enclosed registration card acknowledges that you have read
this license and agree to be bound by its terms.

Retain this copy for your records.

(c) 1986 Clearbrook Software Group Inc,

—
CLEARBROOK SOFTWARE GROUP INC. —
ABBOTSFORD, BRITISH COLUMBIA
©1986 Clearbrook Software Group Inc.

Printed in Canada —
— -
E ==
I— e s R T T e o e S T R TSI TR E

