

 OF_LINK
 =======
 Version 0.5

 User's Manual

Sardis Technologies
(604) 255-4485 (Pacific Time)

2261 East 11th Avenue
Vancouver, B.C.
Canada V5N 1Z7
 Printed in Canada

OF_LINK

Page 2 (c) 1988 by Sardis Technologies

 CREDITS

Special thanks to Will W. for his suggestions.

 TRADEMARKS

"SBUG-E" - Southwest Technical Products Corp. (SWTPc)
"FLEX" - Technical Systems Consultants (TSC)
"OS-9" - Microware Systems Corp.
"SK*DOS" - Star-K Software Systems Corp.
"Dynacalc" - Computer Systems Center
"Stylograph" - Great Plains Computer Co.

 COPYRIGHT NOTICE

The entire contents of this manual and all information on the supplied
diskette(s) are copyrighted by Sardis Technologies, all rights reserved. It
has been sold to you on a "single end user" basis. It is permissible to make
copies of the disk data only for use within a single site. However, if it
becomes necessary to run the programs on more than one computer
simultaneously, additional copies or a multi-copy license must be purchased
from the supplier.

 DISCLAIMER AND WARRANTY

Although much effort has been made to ensure the accuracy of the software and
documentation, Sardis Technologies disclaims any and all liability for
consequential damages, economic loss, or any other injury arising from or on
account of the use of, possession of, defect in, or failure of the supplied
material.

**
*
* Copyright (c) 1988 by David C. Wiens, dba Sardis Technologies
* http://www.sardis-technologies.com
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
**

This manual last revised August 1, 1988 3:53 pm rm#77 oflink.DW097

 OF_LINK

(c) 1988 by Sardis Technologies Page 3

TABLE OF CONTENTS
===

Introduction and Specifications 4

System Prerequisites 5

How to Install OF_LINK 6

New FLEX Utility Commands: 9
 - BINCPY 9
 - BLIST 10
 - CHECKSUM 11
 - DSKSET 11
 - DSKSHOW 12
 - LINK 14
 - LOADO 15
 - MON 15
 - P 16
 - PFORMAT 16
 - PRINT.SYS 18
 - VFORMAT 18
 - XCOPY 19

Changes to TSC's FLEX Manuals 21

New OS-9 Utilities: 22
 - CMDGEN3 22
 - DPOKE 25
 - NEWCRC 26
 - OF_LINK 27

Contents of the OF_LINK Disk 29

Adapting Software Packages to Run Under OF_LINK:
 - General Information 30
 - Dynacalc 31
 - SuperSleuth 31
 - Screditor III 31
 - Stylograph 32
 - RMS Data Base 33
 - FF9 (Forth) 34

OF-MON Monitor Commands: 35
 - A 36
 - B 36
 - E 36
 - FW / FU 36
 - M 37
 - O 38
 - S 38

Sources of Additional FLEX Software 39

System Memory Map 41

OF_LINK

Page 4 (c) 1988 by Sardis Technologies

INTRODUCTION AND SPECIFICATIONS
===

OF_LINK is an OS-9 module that acts as an interface between the FLEX and OS-9
operating systems. It permits FLEX to run underneath, and simultaneous with,
OS-9, in a similar fashion to other systems that let MS-DOS run as a "guest"
operating system under UNIX. Other features of the OF_LINK package are:
 - includes a special copy utility to let you transfer files from OS-9 to
 FLEX, or vice versa.
 - programs running under FLEX with OF_LINK can use FLEX and OS-9 system
 calls within the same program! This means you can write a FLEX program
 that uses OS-9's high-level graphics calls.
 - lets you switch between OS-9 and FLEX without re-booting (using OS-9's
 multi-window environment)
 - multiple users possible under FLEX by running 2 or more copies of FLEX
 simultaneously
 - lets you use your CoCo 3's 80 column text display, high resolution multi-
 color graphics screens, RAM-Disk, hard disks, disk caching, etc.
 with FLEX, even though existing versions of FLEX for the CoCo didn't come
 with such support. No patching of FLEX is necessary.
 - lets you boot FLEX from physical FLEX disks (unlinked or linked), or from
 a virtual disk contained in an OS-9 file. You can even boot FLEX from
 a hard drive!
 - includes OF-MON, a mini-monitor program that takes the place of the ROM
 based monitors often present on other FLEX systems.
 - lets you use your existing copy of FLEX or SK*DOS, even if it was not
 configured for the CoCo. (Refer to the next section regarding which
 versions are compatible with OF_LINK.)
 - FLEX printer spooling is not supported in this version.

NOTE -- throughout this manual, all references to FLEX also apply to SK*DOS
 (STAR-DOS), unless otherwise explicitly stated.

 OF_LINK

(c) 1988 by Sardis Technologies Page 5

SYSTEM PREREQUISITES -- or what you need to run OF_LINK
===

1) A Tandy Color Computer 3 (CoCo 3) with 512K memory. OF_LINK will not run
 with only 128K.

2) Radio Shack's OS-9 Level II Version 2.00.01, or later, for the CoCo 3.

3) SDISK3 disk driver module from D.P. Johnson installed on an OS-9 system
 disk (boot disk). While the standard version of SDISK3 available
 directly from D.P. Johnson (or his dealers such as Microcomm or Clearbrook
 Software Group) will work with OF_LINK, the special Sardis Technologies'
 version for the DMC floppy disk controller will work better.

4) A copy of the FLEX or SK*DOS (STAR-DOS) operating system. The versions
 that have so far been verified to be compatible with the OF_LINK package
 are:
 a) FLEX - General Version 3.01 from Technical Systems Consultants
 b) FLEX - Version 9.0 (older version than 3.01) for the Southwest
 Technical Products Corp. DC-2 controller, from Technical
 Systems Consultants
 c) FLEX - FLEX CoCo Jr. / FLEX CoCo Sr. from SouthEast Media
 d) SK*DOS - STAR-DOS, June '85 version, from STAR-K

Many other versions should also run without changes. If your version of FLEX
or SK*DOS is not on the above list and has problems running with OF_LINK,
contact us and we will try to help (but no guarantees). Note - many of the
versions of FLEX sold by Southwest Technical Products Corp. were so highly
modified internally that they have problems working with OF_LINK.

The OF_LINK package supplies its own console, printer, and disk driver
routines, so it doesn't matter if the FLEX or SK*DOS version you choose does
or doesn't support the disk configuration you need.

OF_LINK

Page 6 (c) 1988 by Sardis Technologies

HOW TO INSTALL OF_LINK
===

The following instructions assume that you have at least one floppy disk
drive (48 tpi), and one hard drive. Since some people have named their hard
drive as /D0, while others use /H0 for their hard drive and leave their
floppy drive as /D0, our instructions below use /F0 for the floppy drive and
/H0 for the hard drive to avoid confusion. Just replace the /F0 and /H0 with
whatever names you use in your system for the floppy and hard drives,
respectively.

If you don't have a hard drive, but have two floppies instead, replace the
/F0 and /H0 with the names of your two floppy drives. First make a copy of
your OS-9 system disk (boot disk). It must have SDISK3 installed and have at
least 70 free sectors, but preferrably more than 140 sectors. Then for the
entire duration of these installation instructions, leave this disk in the
drive referred to as /H0 below. You will end up with an OS-9 format disk
containing a FLEX virtual disk that is your FLEX system (boot) disk.

If you want your boot disk to be a physical FLEX floppy disk, not a virtual
disk, or if you have some other hardware configuration, well, you'll just
have to read the manual thoroughly until you understand the OF_LINK package,
and come up with your own modified installation instructions.

[] Backup the OF_LINK disk we supplied (CoCo OS-9 single-sided, double-
 density 35 track format) to create a working copy, then put the original
 disk away into a safe place.

[] Put the working copy of the OF_LINK disk you just created into drive /F0,
 then type:

 CHX /F0/CMDS

[] If you are using the Sardis Technologies' DMC version of SDISK3, skip
 this step and go on to the next step. If you are using the unmodified
 SDISK3 from D.P. Johnson, you need to patch OF_LINK before running it:

 dpoke /F0/CMDS/of_link 0015 00
 newcrc /F0/CMDS/of_link

[] Now type:

 of_link /F0@ /F0@ /F0/VIRTUAL

[] When prompted to do so, replace the disk in /F0 with a disk containing
 the FLEX or SK*DOS operating system. This will be followed by a prompt
 for the name of the file containing the operating system. If your disk
 has both a .COR and .SYS version of the operating system file, the .COR
 version is preferred.

[] When FLEX or SK*DOS is booted (as indicated by the "+++" or "STAR-DOS:"
 or "SK*DOS:" prompt), put the OF_LINK disk back into drive /F0 and type:

 OF_LINK

(c) 1988 by Sardis Technologies Page 7

 VFORMAT.2
 complete OS-9 pathname - /H0/FLEXVIRTUAL
 (etc.)
 file doesn't exist; create it? - Y

 The size of the volume (in sectors) that you specify will depend on how
 much free space is on the disk in /H0, and on the number and size of the
 FLEX programs you want on the FLEX boot disk. You must specify at least
 66, but may need several hundred.

[] The newly formatted virtual disk can't be accessed until we re-boot, so
 use the "MON" and "O" commands to exit FLEX/SK*DOS and return to OS-9.

[] With the OF_LINK disk still in drive /F0, type:

 of_link /F0@ /F0@ /F0/VIRTUAL /H0/FLEXVIRTUAL

[] When prompted to do so, replace the disk in /F0 with a disk containing
 the FLEX or SK*DOS operating system, and also respond to the prompt for
 the name of the operating system file.

[] When FLEX or SK*DOS is booted, copy all desired files from the FLEX or
 SK*DOS physical disk in drive /F0 to the new virtual disk. For example,
 to copy all files, type:

 COPY 0,3

 However, if the virtual volume is not large enough to contain all the
 files, you will need to selectively copy only the most important ones,
 including of course, the file containing the operating system itself.
 For example:

 COPY 0,3 flex.cor,copy,delete,rename,cat,date,ttyset,asn,build

 There are several files you do NOT want to copy over, as they are not
 compatible with the OF_LINK environment. If you copied ALL files, delete
 these incompatible files from drive #3. Some of them are:

 NEWDISK.CMD, FORMAT.CMD, P.CMD, PRINT.SYS, PRINT.CMD, QCHECK.CMD,
 LINK.CMD

 If your version of FLEX or STAR-DOS was originally configured for the
 CoCo, there will be many other files that cannot be run under OF_LINK
 without crashing the system. We can't list all the files for all the
 possible versions of FLEX you might have, so you will have to come up
 with your own list, but some of them will have names such as:

 CCBASIC.CMD, DISKRATE.CMD, MAKESYS.CMD, RSDIR.CMD, RSREAD.CMD,
 RSWRITE.CMD, SAVEROM.CMD, TERM.CMD, TESTDISK.CMD, USERKEYS.CMD,
 V51.CMD, V32.CMD

[] Now put the OF_LINK disk into drive /F0 and copy all the new OF_LINK
 specific files to the new virtual disk by typing:

 COPY.3 2,3

OF_LINK

Page 8 (c) 1988 by Sardis Technologies

[] If you want to avoid typing the name of the operating system file every
 time you boot, type the following command, where ffffffff.eee is the
 name of the operating system file (eg. FLEX.COR):

 LINK.3 3.ffffffff.eee

[] Use BUILD to create a customized STARTUP file on the virtual disk, for
 example:

 +++BUILD.3 3.startup.txt
 =dskset dr=2,tm=96:ttyset be=08:asn w=1:date:dskshow
 =#

[] Use the "MON" and "O" commands to exit FLEX/SK*DOS and return to OS-9,
 as we will want to patch OF_LINK for our new customized configuration.

[] To tell OF_LINK that we want FLEX's drive #0 (the boot drive) to be
 the virtual drive, and to omit the prompt for the operating system file,
 type the following sequence (with the OF_LINK disk still in drive /F0):

 dpoke /F0/CMDS/of_link 0018 01
 dpoke /F0/CMDS/of_link 001C 00
 newcrc /F0/CMDS/of_link

 The above patches will set FLEX's drives 0, 2, and 3 as virtual drives,
 and leave drive 1 as a physical drive. Refer to the write-up on the OS-9
 module "OF_LINK" (later in this manual) for details if you want some other
 configuration.

[] Copy the patched OF_LINK module into the CMDS library on your OS-9
 system disk:

 copy /F0/CMDS/of_link /H0/CMDS/of_link

 Remove the OF_LINK disk from drive /F0 and put it away.

[] Now you are ready to boot FLEX or SK*DOS in its configured state from the
 virtual disk, and the following command is an example of what you will key
 in the future every time you boot:

 CHX /H0/CMDS
 of_link /H0/FLEXVIRTUAL /F0@ P=/P

 OF_LINK

(c) 1988 by Sardis Technologies Page 9

NEW FLEX UTILITY COMMANDS
===

The next few pages describe additional commands, supplied by Sardis
Technologies, included on the OF_LINK disk, that run under FLEX or SK*DOS in
the OF_LINK environment. They are contained in the FLEX virtual volume on
the OS-9 format disk included as part of the OF_LINK package.

NOTE -- in the syntax descriptions of each command, the commas shown
separating the parameters from each other and from the command name can be
replaced by spaces (blanks).

BINCPY BINCPY
===

The BINCPY command copies FLEX binary files to compact them by squeezing out
wasted space and optionally allowing the user to omit some binary records.
After using the FLEX APPEND utility to add small patches to programs, or to
the FLEX operating system file itself, the binary file usually contains
hundreds of bytes of null data interspersed throughout the file. By packing
the binary records and omitting the null bytes, BINCPY can often reduce the
size of the binary file by one or more sectors. The syntax of BINCPY is:

 BINCPY <input filename>,<output filename>[,P]

The file extension for both files defaults to ".BIN". The optional "P"
parameter at the end puts you into a prompted copy mode which lets you
display each binary record and decide to copy or omit that record. If the
"P" parameter is left off, BINCPY simply copies and packs the entire binary
file without any prompting.

In the prompted mode, BINCPY displays the starting address, ending address,
and size of a binary record, then prompts you to choose one of 5 possible
options for that record:

 C - copy the record shown, then go to the next record
 N - no, don't copy the record shown (ie. omit it), but go to the next
 record
 D - display the contents (in hex and ASCII) of the record shown, then
 reprompt for the same record
 E - immediately exit the BINCPY program; only those binary records
 copied before this response will appear in the output file
 H - display help menu

If you press a wrong key, you will be reprompted for the same binary record.
Both kinds of binary records are shown, data records, and transfer address
records. Note that the "D" option is invalid for a transfer address record,
as there is no data in such a record other than the address which is already
shown in the prompt.

If P.CMD precedes BINCPY on the command line, only the record display ("D"
response to the prompt) is sent to the printer; all other prompts and

OF_LINK

Page 10 (c) 1988 by Sardis Technologies

displays appear on the console.

The selective copying feature can be used to extract portions of a program,
which can then be disassembled, modified, re-assembled, and then merged back
into the original program. With this procedure the patched program takes up
less space than if patch overlays had been merely appended to the original
program. Another use for the selective copying would be to strip off I/O
driver routines from a FLEX.SYS file to create a FLEX.COR file.

For more information on FLEX binary records, refer to the "FLEX Advanced
Programmer's Guide", or to the "SK*DOS User's Manual".

Examples:
 1) RENAME 0.FLEX.SYS,FLEX.OLD
 BINCPY 0.FLEX.OLD,0.FLEX.SYS
 LINK 0.FLEX.SYS

 2) P BINCPY TEST JUNK P

In the first example, BINCPY is used to squeeze out wasted space in the
FLEX.SYS file, then the new file is LINK'd to for booting. In the second
example, the P.CMD output override is specified immediately before "BINCPY"
so selected records from the TEST.BIN file on the working drive can be
dumped to the printer. The JUNK.BIN file on the working drive will only be
created if records are selected to be copied. The "P" parameter at the end
of the line selects the prompted mode.

The BINCPY program and documentation have been adapted from the public domain
program of the same name written by J.C. Hausler that appeared in '68' Micro
Journal December '84 pp.41-44.

BLIST BLIST
===

The BLIST command is similar to the LIST command, in that it lists the
contents of text files to the screen or printer. However, it uses a very
large buffer to reduce wear and tear on the disk drives, especially valuable
when a slow printer is being used. Pageination and line numbers are not
supported in this version. Its syntax is:

 BLIST,<file spec>

where <file spec> is the name of the text file to list. An extension of
.OUT is assumed unless otherwise specified. BLIST may be preceded with the
"P" command. The "escape character" feature of FLEX (refer to TTYSET) is
active. BLIST and its buffer occupy most of $0100-$7FFF of user memory while
running.

 OF_LINK

(c) 1988 by Sardis Technologies Page 11

CHECKSUM CHECKSUM
===

The CHECKSUM command reads any disk file and computes a checksum on it. This
is a quick way of determining whether or not two copies of a program or text
file are identical versions.

Another way of using it is, every time you make changes to a program or other
file, to calculate the checksum of the new version and write it in a log.
Later, if you want to determine which version a particular copy is, calculate
the checksum on it and look it up in the log.

The syntax of the command is:

 CHECKSUM,<file spec>

where <file spec> is the name of the file on which to calculate the checksum
(the extension defaults to .BIN). The 2 byte checksum is displayed as a four
digit hexadecimal number.

Another possible use for this command is to simply read a file to see if any
sectors in it have read errors.

DSKSET DSKSET
===

The DSKSET utility lets you change various disk parameters without having to
resort to machine language patching. You can view the current setting of
these parameters with the DSKSHOW utility that is described elsewhere. The
syntax of DSKSET is:

 DSKSET,<parameter list>

where <parameter list> is a list of 2 character parameter codes, each
followed by an equals sign "=" and by the value being assigned. Each
parameter should be separated from the next one by a comma or space (blank).
All parameters following a DR=d parameter apply only to that specified drive,
until the next DR=d parameter. If no DR parameter is specified, drive 0 is
assumed. Some examples are:

 +++DSKSET TM=96
 +++DSKSET DR=1,SS=9,SD=17

The first example sets drive number 0's media track density flag to "96 tpi".
The second example changes the number of sectors per side, for drive 1, to 9
and 17 for single and double density, respectively.

Note -- PFORMAT also updates some of these values. More specifically, the
media values for the drive containing the disk being formatted are updated as
per the responses to PFORMAT's prompts re double/single density, lower
density Y/N. Also, since PFORMAT doesn't handle "double stepping", the TM
(media track density) flag is set to the same tpi (tracks per inch) value as

OF_LINK

Page 12 (c) 1988 by Sardis Technologies

the drive itself.

The DSKSET command is serially re-usable and position independent, so could
be made memory resident, if desired.

Here is a list and description of all DSKSET parameters:

DR=d select DRive

Specifies to which drive the following parameters apply, where "d" is 0, 1,
2, or 3.

TM=48 or TM=96 Track density of Media (tpi)

Specifies whether the diskette currently inserted is formatted with 48 or 96
tpi (tracks per inch).

SS=dd Sectors per side of Single density track

This parameter specifies how many sectors are on one side of one single
density track of the diskette currently inserted. Valid values are 9 or 10.
The TSC standard is 10. If this value does not match the actual format of
the diskette in that drive, the system will look for some sectors on the
wrong side of the disk and will never find them.

SD=dd Sectors per side of Double density track

This parameter specifies how many sectors are on one side of one double
density track of the diskette currently inserted. Valid values are 16, 17, or
18. The TSC standard is 18. If this value does not match the actual format
of the diskette in that drive, the system will look for some sectors on the
wrong side of the disk and will never find them.

DSKSHOW DSKSHOW
===

The DSKSHOW utility lets you view the current settings of several disk
parameters. Refer to the description of the DSKSET utility above on how to
change some of these parameters. The syntax of DSKSHOW is simply:

 DSKSHOW

The DSKSHOW command is serially re-usable and position independent, so could
be made memory resident, if desired.

Here is a list and description of all DSKSHOW parameters:

DR DRive

Specifies the logical FLEX drive number for the drive displayed in each of
four columns.

 OF_LINK

(c) 1988 by Sardis Technologies Page 13

 OS-9 Pathnumber

These values are the OS-9 path numbers used by OF_LINK for each logical FLEX
drive and remain unchanged for the duration of a session (until you reboot).

DV Type of DriVer

The codes shown indicate whether the FLEX logical drive is associated with a
physical disk (P), or is a virtual disk (V) in an OS-9 file. Refer to the
description of the OF_LINK module later in this manual on how to change these
codes.

 Double Sided drive

This indicates whether the disk drive itself is capable of double-sided
operation (2 sides), or not (1 side). This value is copied from the
corresponding OS-9 device descriptor, and cannot be changed by DSKSET. (not
shown for virtual disks)

 Track density of Drive (48/96 tpi)

Specifies whether the drive steps at 48 or 96 tpi (tracks per inch). This
value is copied from the corresponding OS-9 device descriptor, and cannot be
changed by DSKSET. (not shown for virtual disks)

TM Track density of Media (48/96 tpi)

Specifies whether the diskette currently inserted is formatted with 48 or 96
tpi (tracks per inch). You can change this value with DSKSET. PFORMAT also
updates it, to the same value as the "track density of drive" above. (not
shown for virtual disks)

 Density

The value shown here is the system's latest guess as to whether the disk is
single (S) or double (D) density. Since the disk drivers automatically
determine this, you can't use DSKSET to change this value. Note that
When a new diskette is inserted, this value will not change until a track
other than track 0 is read or written. PFORMAT also updates this value as per
the response to the prompt "double density?". (not shown for virtual disks)

SS Sectors per side of Single density track

This parameter specifies how many sectors are on one side of one single
density track of the diskette currently inserted and can be updated using
DSKSET. Valid values are 9 or 10. The TSC standard is 10. If this value does
not match the actual format of the diskette in that drive, the system will
look for some sectors on the wrong side of the disk and will never find them.
PFORMAT sets this value to 10 unless "lower density" is selected, in which
case it sets it to 9. (not shown for virtual disks)

SD Sectors per side of Double density track

This parameter specifies how many sectors are on one side of one double
density track of the diskette currently inserted and can be updated using

OF_LINK

Page 14 (c) 1988 by Sardis Technologies

DSKSET. Valid values are 16, 17, or 18. The TSC standard is 18. If this value
does not match the actual format of the diskette in that drive, the system
will look for some sectors on the wrong side of the disk and will never find
them. PFORMAT sets this value to 18 unless "lower density" is selected, in
which case it sets it to 16. (not shown for virtual disks)

 OS-9 Pathlists Used

The OS-9 pathlists you told OF_LINK to use for each FLEX logical drive are
shown here, and remain unchanged for the duration of a session (until you
reboot).

A sample display is:

 DSKSHOW

 Drive Characteristics DR 0 1 2 3
 -- -- -- --
 OS-9 path number 3 4 5
 type of driver DV P P V V
 sides 2 1
 48/96 tpi 48 96

 Media currently inserted

 48/96 tpi TM 48 96
 density (S/D) S D
 sectors/side (SD track) SS 10 9
 sectors/side (DD track) SD 18 16

 OS-9 pathlists used

 drive 0 = /d0@
 drive 1 = /d2@
 drive 2 = /h0/FLEX/virtual4

LINK LINK
===

The LINK command is used to update a system (boot) disk with a pointer to the
FLEX or SK*DOS file that contains the operating system itself (or other
program) to be loaded when booting the system. If you have "LINK'd" a system
disk, OF_LINK can determine which file to load without prompting you for the
file name.

Most versions of FLEX or SK*DOS already come with the LINK command, and you
can use either ours or theirs. We supply our own because a few versions
omitted this command.

NOTE - any time the file that was LINK'd to is moved, either because you
created a new version with additional code using APPEND, or COPY moved it,

 OF_LINK

(c) 1988 by Sardis Technologies Page 15

you need to re-run LINK to update the pointer to the new location of the
file.

LOADO LOADO
===

The LOADO command is used to load a binary file from disk into memory. An
optional address offset lets you load the program into a different location
than specified by the file. Its syntax is:

 LOADO,<file spec>[,<offset>]

where <file spec> is the name of a binary file to be loaded (extension
defaults to .BIN), and <offset> is an optional 4 digit hexadecimal address
displacement. Refer to the FLEX Programmer's Manual for a description of the
offset field (location $CC1B-$CC1C) and the LOAD routine (address $CD30), as
these are used by LOADO.

Some examples are:
+++LOADO ABCDE.CMD
+++LOADO WXYZ.1,E000

The first example loads binary file "ABCDE.CMD" from the work drive into
those memory locations specified in the file. The second example loads
binary file "WXYZ.BIN" from drive 1 into memory, but at locations $2000
lower than specified. (Eg., a byte destined for $9374 is loaded into $7374
instead, because $9374 + $E000 = $7374 when the result is truncated to 16
bits.)

Note -- LOADO resides in FLEX's Utility Command Space (starting at $C100);
don't use it to load another program into this area.

MON MON
===

MON is used to temporarily exit FLEX and execute the OF-MON monitor program
which is described elsewhere.

To re-enter FLEX after using the MON command, use OF-MON's "FW" or "FU"
commands; do NOT use OF-MON's "J" command to directly jump to $CD03 as you
do on most other systems.

OF_LINK

Page 16 (c) 1988 by Sardis Technologies

P P
===

The P command (P.CMD) allows you to redirect output from the screen to the
printer instead. It has the same basic function as the P.CMD supplied with
FLEX or SK*DOS itself. However, many of those versions of P cannot be used
with OF_LINK, as they include code that accesses the printer port hardware
directly. Our P.CMD neither includes any hardware specific code, nor does
it attempt to load a PRINT.SYS file, as our printer driver is built-in to
OF_LINK itself.

Also refer to the description below of the PRINT.SYS file.

PFORMAT PFORMAT
===

PFORMAT is a replacement for the FLEX "NEWDISK" command. It is used to format
actual (physical) floppy disks. Refer to VFORMAT for formatting virtual
disks. The syntax used by PFORMAT is:

 PFORMAT,<drive>

where <drive> is a single digit number (from 0 to 3) specifying which drive
will contain the disk to be formatted. PFORMAT issues a series of prompts
before beginning the actual formatting process, so the same drive can be used
to load and execute PFORMAT from disk, as will be used to hold the disk being
formatted.

Most of the prompts are self-explanatory and are answered with either a "Y"
or "N" (refer to the sample session below). At the end of the prompting
session, but before formatting begins, you will be given another chance to
abort or continue. Several prompts that need more explanation are:
a) LOWER-DENSITY FORMAT? - Usually you will respond with "N" to select the
 TSC standard of 10 sectors per track for single density and 18 sectors per
 track for double density. If you respond with "Y", you will get fewer
 sectors per track (9 for single, 16 for double density) with longer gaps
 between each, similar to the IBM 3740 standard.
b) SWTPC FORMAT? - This prompt only has significance if the disk is to be
 read or written on another system. Most systems that use Western Digital
 controller chips numbered 1791, 1793, 2791, 2793, 1770, 1772, or 1773
 (such as on the Sardis Technologies' DMC controller) can read disks
 formatted with a response of "Y" as well as those formatted with "N" (as
 long as the disk driver routines disable the side flag compare). Systems
 using the 1795, 1797, 2795 or 2797 chips are more fussy. Most
 manufacturers using these latter chips properly implemented the side flag
 -- you must use a response of "N" for disks to be read on their systems.
 But a few, such as Southwest Technical Products Corp. (SWTPc), used the
 side flag to select single vs double density -- you must respond with "Y"
 to the prompt in order for disks to be able to be read or written on their
 systems.
c) VOLUME NAME - the name must follow standard FLEX file name rules.
d) VOLUME NUMBER - any number from 0 through 65535.

 OF_LINK

(c) 1988 by Sardis Technologies Page 17

After the last prompt, the formatting process will take approximately 45
seconds for a single sided, single density 35 track disk, to approx. 1.5
minutes for double sided, double density 40 tracks. Defective sectors will
slow down the process. Any sector that is deemed "bad" will be reported as
"BAD SECTOR AT TT SS" where "TT SS" is the track/sector number in
hexadecimal.

If there any bad sectors on track zero, or if the very first or very last
sector in the data chain is bad, or if 50 or more sectors have errors (soft
or hard) in the verify pass, the formatting will be aborted.

If you have many errors when formatting a disk, here are several possible
causes you should check out:
 - the drive's rotational speed might not be within specifications; use
 the RUN "*" program on the OS-9 BOOT/CONFIG disk to check it.
 - the track at which write precompensation is activated may not be
 optimal; if you are running OF_Link on a system that uses the Sardis
 Technologies' DMC controller, study the "Changing User Values" section
 in the SDISK-DMC Software manual regarding the write precompensation
 table.
 - using a bulk tape eraser on the disk being formatted often helps
 (but be careful not to accidently erase other disks!)

NOTE:
- PFORMAT erases the contents of FLEX's command line buffer, so any commands
 specified after PFORMAT, on the same command line, will be ignored.
- PFORMAT and its track buffers occupy most of $0100 - $7FFF of user memory
 while running.
- PFORMAT does not support double stepping, so 96 tpi drives will format
 disks only at 96 tpi.
- only 35, 40, or 80 tracks can be formatted with the current version.

A sample session would look like this:

+++PFORMAT 1
PFORMAT - (c) 1988 by Sardis Technologies
Are you sure you want to format a physical disk? (Y/N) - Y
35 tracks? (Y/N) - N
40 tracks? (Y/N) - N
80 tracks? (Y/N) -Y
Lower-density format? (Y/N) - N
Double-density? (Y/N) - Y
Double-sided? (Y/N) - Y
SWTPC format? (Y/N) - N
Volume name - TEST
Volume number - 1
Insert disk to be formatted into FLEX's drive 1
 (C)ontinue, or (A)bort - C
Write pass in progress
Write pass done, verify pass in progress
Verify pass done
Formatting completed OK
Sectors formatted = 2844

OF_LINK

Page 18 (c) 1988 by Sardis Technologies

PRINT.SYS PRINT.SYS
===

This is a dummy file that doesn't do anything, but is provided merely so
those packages that insist on finding a file with this name in order to run
can run under OF_LINK. Refer to the P.CMD description above.

VFORMAT VFORMAT
===
VFORMAT is a replacement for the FLEX "NEWDISK" command. It is used to
format a FLEX virtual disk that is contained within an OS-9 file. Refer to
PFORMAT for formatting physical (real) disks. The syntax for VFORMAT is
simply:

 VFORMAT

All necessary parameters are obtained by prompting. VFORMAT can format a
virtual volume even if it is not currently associated with any FLEX logical
drive number. The OS-9 file holding the FLEX virtual volume may already
exist, or will be created if it doesn't exist yet. VFORMAT issues a series
of prompts before beginning the actual formatting process, so the same disk
drive can be used to load and execute VFORMAT from disk, as will be used to
hold the disk being formatted.

Most of the prompts are self-explanatory and are answered with either "Y" or
"N" (refer to the sample session shown below). At the end of the prompting
session, but before formatting begins, you will be given another chance to
abort or continue. Several prompts that need more explanation are:
 a) "Complete OS-9 pathname" - specify the complete pathlist (begins with
 the "/") of the OS-9 file that is to contain the FLEX virtual volume.
 b) "Volume size (in sectors)" - the volume can range in size from 66 to 8130
 sectors (of 256 bytes each), for 16K to 2 Megabytes of storage. The
 number you specify is internally rounded up to the nearest multiple of
 64, then has 2 added to it. This is because virtual disks have 64
 sectors per "track" on tracks 1-127, plus 2 sectors on "track" 0
 (system information record, and first directory sector).
 c) "Directory size (number of files)" - this is just your guess of how many
 files, at most, this volume will ever contain. VFORMAT uses this number
 to create an initial directory of the appropriate size. If you guessed
 too low, FLEX will later expand the directory size automatically, but
 performance will then be reduced, since the additional directory sectors
 could be scattered all over the volume.
 d) "Volume name" - the name must follow standard FLEX file name rules
 e) "Volume number" - any number from 0 through 65535

Note - VFORMAT erases the contents of FLEX's command line buffer, so commands
specified after VFORMAT, on the same command line, will be ignored.

A sample session would look like this:

 OF_LINK

(c) 1988 by Sardis Technologies Page 19

+++VFORMAT
VFORMAT - formats a virtual FLEX volume in an OS-9 file
 (c) 1988 by Sardis Technologies
Complete OS-9 pathname - /H0/FLEX/virtual3
Volume size (in sectors) - 2500
Directory size (number of files) - 150
Volume name - VIRT03
Volume number - 1
 (P)roceed with formatting, (R)especify, or (A)bort - P
File doesn't exist; create it? (Y/N) - Y
Formatting of virtual disk in progress
Formatting completed OK

XCOPY XCOPY
===

The XCOPY command is used to copy the contents of one file from a FLEX format
disk to an OS-9 format disk, or vice versa. Both ASCII text and non-text
(eg. binary) files can be copied, although binary files are only copied
"raw", ie. they are not converted into the native load format of the destina-
tion operating system. The syntax of XCOPY is:

 XCOPY,<origin file spec>[,<origin options>],
 <destination file spec>[,<destination options>]

The first file specification is for the "source" or "from" file, followed by
its option parameters, and the second file specification is for the "to" or
"destination" file, followed by its option parameters. FLEX or OS-9 files
can be specified for each, allowing for four possible transfer combinations:
FLEX to OS-9, OS-9 to FLEX, FLEX to FLEX, OS-9 to OS-9. Since it's not
always possible to determine from a file name alone whether it represents a
FLEX or OS-9 file, FLEX file names must be preceded with "F=" and OS-9 path
lists with "O=". Either spaces or commas may be used to separate file names
and options from each other.

The only option currently implemented is the "-S" option for FLEX files.
Unless you specify otherwise, XCOPY assumes FLEX files are ASCII text files,
so uses an extension of ".TXT" and enables automatic space compression and
expansion. If the FLEX file being read was not created with automatic space
compression (eg. it's a binary file) and/or the FLEX file being written is
not to have spaces compressed, use the -S option after the appropriate file
spec(s).

Examples:
 1) XCOPY,F=oldfle,F=newfile.2,-s
 2) XCOPY O=/H0/SOURCE/myprog.txt F=1.yourprog.bak
 3) XCOPY f=junk.out.0 o=gold

Example #1 copies and converts the compressed FLEX text file OLDFILE.TXT on
the working drive to a new uncompressed FLEX text file NEWFILE.TXT on drive
2. Example #2 copies the OS-9 text file MYPROG.TXT in directory /H0/SOURCE
to a new (automatically space compressed) FLEX text file YOURPROG.BAK on

OF_LINK

Page 20 (c) 1988 by Sardis Technologies

drive 1. Example #3 copies the space compressed FLEX text file JUNK.OUT on
drive 0 to the new OS-9 file GOLD in OS-9's current working directory, with
the compressed spaces automaticaly expanded.

For more details regarding FLEX's automatic space compression/expansion,
refer to the "FLEX Advanced Programmer's Guide" or "SK*DOS User's Manual".

Since XCOPY uses both FLEX and OS-9 system calls, any error messages are
preceded with "FLEX ERROR" or "OS-9 ERROR" so you can look up the messages in
the appropriate manuals.

 OF_LINK

(c) 1988 by Sardis Technologies Page 21

CHANGES TO TSC'S FLEX MANUALS AND STAR-K'S SK*DOS MANUALS
===

1) The FLEX manuals state that, after using the MON command, to re-enter FLEX
 by jumping to location $CD03. Do NOT do this with OF_LINK. Refer to the
 descriptions of the "J", "F W", and "F U hhhh" commands in the OF-MON
 section elsewhere in this manual.

2) FLEX manuals talk about "automatic drive searching" in several places:
 a) the description of the "ASN" command in the FLEX User's Manual
 b) the description of FMS function 20 "Find Next Drive" in the FLEX
 Programmer's Manual
 c) the description of the "Check Drive Ready" disk driver routine in the
 FLEX Programmer's Manual

 An OF_LINK system, with 5" drives attached, functions (more or less) like
 TSC's description of a system with 8" drives. All four drives will be
 searched, and the system will not hang up if a drive is empty.
 (>>> not implemented yet <<<)

3) If automatic drive searching is not invoked (ie. ASN has set the system
 and/or work drive to a specific drive) or an explicit drive number is
 specified in a command, operation is slightly different. Attempting to to
 access a drive not containing a disk will NOT hang up the system forever
 (or until a disk is inserted and the door closed) as on most other 5"
 systems, so do NOT press the reset button. However, the system will take
 as long as one minute before timing out with an error message, so be
 patient!

4) There are three routines defined in newer versions of FLEX that were
 missing in the earliest versions:
 a) $D3E5-$D3E6 contains an address pointing to a routine that inputs a
 character from the console keyboard without echoing it. It was the
 omission of this routine that caused the present "mess" with so many
 FLEX software packages requiring patching to run on systems that don't
 have a 6850 ACIA at $E004. OF_LINK goes one step further and adds a
 "JMP" ($7E) opcode at $D3E4 so you can use either direct jumps to
 $D3E4 or indirect jumps using $D3E5 to use the input character
 routine.
 b) $DE18-$DE1A has a jump instruction to a "warm start" disk driver
 subroutine that is called during the FLEX warmstart procedure.
 c) $DE1B-$DE1D has a jump instruction to a "SEEK to track" disk driver
 subroutine.

 OF_LINK supports all three routines, even for old versions of FLEX. Note
 however, if you are using one of these early versions of FLEX that the
 "warmstart" disk driver routine will never be called by FLEX.

5) The disk driver jump table at $DE00-$DE1D must never be changed when using
 OF_LINK. On the other hand, you should never have a need to do so, as
 drivers for other devices (hard drive, RAM-Disk, etc.) are implemented in
 OS-9, and used via the OF_LINK "virtual" drive capability.

6) Do NOT use the following commands or files provided with FLEX or SK*DOS:
 NEWDISK.CMD, FORMAT.CMD, P.CMD, PRINT.SYS, PRINT.CMD, QCHECK.CMD

OF_LINK

Page 22 (c) 1988 by Sardis Technologies

OS-9 UTILITIES
===

The next few pages describe additional commands supplied by Sardis
Technologies to run under OS-9.

CMDGEN3 CMDGEN3
===

Syntax: cmdgen3 <command name>

Function: Creates an OS-9 module which can execute a program or series of
-------- programs, with run time parameter substitution. Also displays the
 command sequence contained in a generated command module.
 command module.

Parameters:

 command name The name of the executable module to be generated or
 displayed. It is also the name of the file in the current
 execution directory containing that module. The name may be
 up to 29 characters long.

Notes:

 * Shell procedure files can save you lots of time and keying effort when-
 ever you need to repeatedly run the exact same complicated command or
 series of commands. But procedure files lose much of their value when
 the command sequences need to be slightly different each time they are
 run, as you either first have to use a text editor to modify the file
 before each run, or are forced to create many versions of that proced-
 ure. Also, procedure files are just ASCII text files, not OS-9 modules,
 so they can't be loaded into memory, but must be read from disk as they
 are being executed.

 CMDGEN3 solves these problems by allowing the changeable parts of the
 command sequences to be specified at run time. It also "encapsulates"
 the ASCII text inside a module so it can be made memory resident.

 CMDGEN3 creates "macro" commands. That is, it lets you quickly and
 easily build your own custom commands from one or many other existing
 commands. You don't have to be a programmer, because instead of using an
 assembler or high level language compiler, CMDGEN3 simply lets you key
 in the sequence of commands as you would if you were running them
 directly from the shell. New commands can be generated so quickly they
 can even be used for "throw away" commands that you generate, use, and
 discard, all in a few minutes.

 Like regular OS-9 commands, your new command can accept parameters (up
 to three) which it in turn passes on to the commands it is composed of.
 This parameter substitution facility is especially useful when the same
 changeable value is used repeatedly within a command sequence, such as

 OF_LINK

(c) 1988 by Sardis Technologies Page 23

 in example #5 below.

 * To create a new macro command, run CMDGEN3 and specify the name of the
 command module to be created. The module will be stored in a file creat-
 ed in the current execution directory, so you may need to first run the
 CHX command. When you see the "Cmdgen3:" prompt, enter the command line
 (up to 150 characters long) that the generated command is to execute.

 This command line may include all the features that you use in a normal
 shell command line (ie. the line you key after the "OS9:" prompt), such
 as the ";" or "!" or "&" characters to put more than one command on one
 line. In addition, you can insert parameter variables that are later
 replaced with the user supplied values when the generated command is
 run.

 Up to three parameter variables can be specified. Wherever you will want
 the first run time parameter to appear, insert the parameter variable
 "%1". Do not use a space before the "%" or after the "1" unless you want
 the space there at run time. Similarly, parameter variables "%2" and
 "%3" are used for the second and third run time parameter values. Each
 parameter variable may appear more than once in the same line, and they
 may be placed in any sequence. Study the examples below.

 If the "%" character is immediately followed by any character other than
 the digits "1", "2", or "3", it will not be interpreted as a parameter
 value, but will be left in the command line unchanged.

 * To run the generated command, type the command module name, followed by
 the run time parameter substitution values (up to three). These
 parameters are separated from each other by blanks, so may not contain
 embedded blanks. Most printable characters, including commas, are
 allowed in a parameter, except for the eight special characters
 ";!<>()#&" that the shell uses for itself. Refer to the examples below.
 There is no limitation on the length of each parameter except for the
 200 total characters maximum described below.

 The expanded command line (ie. after parameter substitutions) will be
 displayed, but will not be executed until you press a key (any key).
 This gives you a chance to inspect the command line that will actually
 be executed, and let you abort it with the BREAK key if it's not what
 you wanted to do.

 The expanded command line (after parameter substitutions) may not be
 more than 200 characters long -- if it is, "ERROR #70" will be displayed
 and the command line will not be executed.

 * If you can't remember what command sequences make up an existing
 generated command, there are two ways to display the embedded command
 line. One is to run CMDGEN3 and specify the command module name. CMDGEN3
 will look for it in the current execution directory, so you may need to
 run the CHX command first. See example #1 below. If the module is not a
 valid CMDGEN3 module, the message "**** Not a CMDGEN3 module!" will be
 displayed.

OF_LINK

Page 24 (c) 1988 by Sardis Technologies

 The other way is to run the generated command itself, but specify "%1 %2
 %3" as the run time parameter line. When the expanded command line is
 displayed, it will look exactly like the original internal command line.
 Press the BREAK key to abort without executing it.

 * Although CMDGEN3 was written by Sardis Technologies, it incorporates
 some code from Stephen Goldberg's original CMDGEN program, with his
 express permission. (See RAINBOW magazine May '88 pp. 185-189)

Examples:

 1) The generated command module COPYSRC already exists, and we want to see
 what command line it contains, without executing it:

 OS9:cmdgen3 copysrc
 copy %1/source/%3 %2/source/%3 #24k
 or
 OS9:copysrc %1 %2 %3
 copy %1/source/%3 %2/source/%3 #24k
 <BREAK>

 2) To create a command module that copies all files from one directory to
 another directory:

 OS9:cmdgen3 copyall
 Cmdgen3: chd %1;dsave -s16 %1 %2 #8 ! (chd %2)

 3) This example runs the command module displayed in example #1 to copy
 file "junk.txt" from the SOURCE directory on drive /D1 to the SOURCE
 directory on /D0. Note that since you only have to type the file name
 once, and that it is at the end of the line you key, how easy it would
 be to use the control-A and backspace keys to repeat the same command
 for other file names:

 OS9:copysrc /D1 /D0 junk.txt
 copy /D1/source/junk.txt /D0/source/junk.txt #24k

 4) To run the command module created in example #2 to copy all files from a
 disk in drive /D1 to a directory TEST on /R0:

 OS9:copyall /D1 /R0/TEST
 chd /D1;dsave -s16 /D1 /R0/TEST #8 ! (chd /R0/TEST)

 5) To create a command sequence to edit a text file with first deleting the
 previous version (.BAK extension), renaming the current version (.TXT
 extension) to a .BAK extension, then editing the .BAK version into the
 new .TXT version:

 OS9:cmdgen3 ed3
 Cmdgen3: chd /D1/source;del %1.bak;rename %1.txt %1.bak;edit
 %1.bak %1.txt #16k

 To run this command, merely type:

 OS9:ed3 essay

 OF_LINK

(c) 1988 by Sardis Technologies Page 25

 which automatically expands into a long command line that you no longer
 need to type in yourself:

 chd /D1/source;del essay.bak;rename essay.txt essay.bak;edit
 essay.bak essay.txt #16k

DPOKE DPOKE
===

Syntax: dpoke <pathlist> <offset> <data>[...]

Function: Updates a portion of a file on disk with new values that are
-------- specified on the command line.

Parameters:

 pathlist The name of the disk file to be updated (patched).

 offset The 16 bit offset from the beginning of the file where the string
 of new data is to begin writing. Specified as a 4 digit hexa-
 decimal number (leading zeros may be omitted).

 data A list of one to 100 8-bit values that are to be written to the
 file starting at the offset. Specified as 2 digit hexadecimal
 numbers (leading zeros may be omitted). The values are separated
 from each other by spaces or commas.

Notes:

 * There are times when you need to patch a module before you load it into
 memory, especially if that module will be incorporated into the OS9BOOT
 file. OS-9 has several commands available to let you patch a module in
 memory (DEBUG and MODPATCH), display a module in memory (DEBUG), or
 display a module on disk (DUMP), but no facility to patch a module
 directly on disk. DPOKE provides this missing link.

 While there are more powerful disk patchers available from other sources
 (such as Doug DeMartinis' "dEd" on CompuServe), we needed a simple, non-
 interactive, command line oriented patcher for you to use in the OF_LINK
 installation procedure. That's why we wrote DPOKE.

 * DPOKE writes the new data over the existing data in the file, but only
 those bytes specifically patched are altered; the rest of the file is
 not changed.

 * After patching a module on disk, you must always update the header
 parity and CRC bytes using OS-9's VERIFY or our NEWCRC command.

 * Don't use DPOKE unless you know what you are doing, and remember to have
 a backup copy of any module you patch in case you make a mistake. To
 check if the patch was made as desired, you can use DUMP to display the

OF_LINK

Page 26 (c) 1988 by Sardis Technologies

 patched module, or use CMP to compare the patched version to the un-
 modified backup copy.

Examples:

 1) The following example patches the OF_LINK module on disk to change the
 flag regarding prompting for the system (boot) file name to suppress the
 prompt:

 OS9:dpoke /d1/cmds/of_link 001c 00
 OS9:newcrc /d1/cmds/of_link

 2) The following example uses DPOKE to change the volume name of a disk to
 "RT36" by directly patching the Identification Sector (LSN 0). Since
 this sector does not contain a module, NEWCRC should not be run
 afterwards.

 OS9:dpoke /d0@ 01f 52 54 33 b6

NEWCRC NEWCRC
===

Syntax: newcrc <pathlist>

Function: Recalculates and updates the header parity and CRC bytes of one or
-------- more OS-9 modules in a file on disk.

Parameters:

 pathlist The name of the file containing the module(s) to be updated.

Notes:

 * Unlike OS-9's VERIFY command, NEWCRC does not create a new file - the
 existing file is updated in place.

 * If the file contains more than one module, NEWCRC will update each of
 them in turn, stopping only when it encounters the end of the file, or
 finds a non-module data area, whichever comes first. Finding a non-
 module area will generate an E$BMID error (#205).

Examples:

 1) This example updates the header parity and CRC bytes of the OF_LINK
 module on disk:

 OS9:newcrc /d1/cmds/of_link

 OF_LINK

(c) 1988 by Sardis Technologies Page 27

OF_LINK OF_LINK
===

Syntax: of_link physpath [physpath [virtpath [virtpath]]] [p=prtpath]

Function: Enables the FLEX (or SK*DOS) operating system to run as a "guest"
--------- operating system under OS-9. Acts as an interface between FLEX
 and OS-9, boots the FLEX operating system, and provides the OF-MON
 monitor program for the FLEX environment.

Parameters:

 physpath The device name of a floppy disk drive, with a "@" suffix to
 designate raw physical I/O.

 virtpath The pathlist of an OS-9 file that has previously been formatted
 with VFORMAT to create a virtual FLEX volume in that OS-9 file.

 prtpath The physical device name of the printer (must be the last
 parameter.

Notes:

 * The first non-printer path specified is for FLEX logical drive #0, the
 2nd path, if specified, is for drive #1, the 3rd path for #2, and the
 4th path is for logical drive #3. As initially provided, OF_LINK expects
 FLEX drives 0 and 1 to be physical drives, and drives 2 and 3 to be
 virtual drives, as indicated in the syntax listing above. However,
 OF_LINK can be patched so any drive can be a physical or virtual drive,
 as desired.

 At an offset of $0018 - $001B from the beginning of the OF_LINK module
 is a table of 4 bytes, one byte for each FLEX drive (0 - 3), where a $00
 value flags that drive as a physical drive, $01 as a virtual drive. To
 change the default settings, you can either patch OF_LINK on disk, or
 patch it in memory every time you run it by first LOAD'ing it into
 memory, then using MODPATCH to change the flags before running OF_LINK.

 For example, to change FLEX drive #1 to virtual at run time, type:
 LOAD OF_LINK
 MODPATCH
 L OF_LINK
 C 19 00 01
 V
 OF_LINK /D0@ /D2/FLEX44 P=/P

 To patch it on disk:
 DPOKE /D1/CMDS/OF_LINK 0019 01
 NEWCRC /D1/CMDS/OF_LINK

 * OF_LINK always boots from FLEX logical drive #0, so the path you specify
 for that drive must contain the FLEX operating system. It is possible to
 boot FLEX from a virtual disk, as well as from a physical disk. You can
 even boot FLEX from a hard disk if drive #0 is specified to be a virtual

OF_LINK

Page 28 (c) 1988 by Sardis Technologies

 disk on the hard drive.

 * OF_LINK, as initially provided, always prompts you to key in the name of
 the file containing the operating system to be loaded (FLEX.COR,
 FLEX.SYS, STAR-DOS.COR, etc.) If FLEX's LINK command has been run on the
 boot disk, OF_LINK can find the operating system file by itself.
 However, you need to patch OF_LINK (on disk or in memory) to suppress
 the name prompt. Change offset $001C from $01 to $00 to do this.

 * While OF_LINK can run with either the standard D.P. Johnson version of
 the SDISK3 driver or Sardis Technologies' modified SDISK3-DMC version,
 OF_LINK as distributed is initially set up for the DMC version. To
 patch OF_LINK to run with the original D.P. Johnson version of SDISK3,
 change offset $0015 from $80 to $00. When running with the D.P. Johnson
 version of SDISK3, you will find that the system will take a long time
 and generate lots of retries before reporting disk I/O errors, and when
 switching disks in a drive from double density to single density, or
 vice versa, the system will also generate lots of retries before
 recognizing the new density. This is because only the Sardis Technol-
 ogies' version of SDISK3 has implemented the "disable retry" bit in the
 direct sector read/write routines.

 * To exit OF_LINK (ie. to exit FLEX or SK*DOS), execute the "MON" command,
 then OF-MON's "O" command to return to OS-9.

 * OF_LINK opens any FLEX virtual volumes as soon as it is invoked, even
 before the actual booting process begins, so those disks containing
 virtual volumes should be in the drives before you begin execution of
 OF_LINK.

 * Note that it is possible to specify both a physical and a virtual disk
 for the same actual floppy disk drive. In that case, the disk contain-
 ing the virtual volume must be in the drive when OF_LINK begins execut-
 ing, and when you use "MON"/"O" to exit OF_LINK. At all other times be
 very careful to ensure that the right disk is in the drive. You should
 not try to access both the physical and the virtual disk on the same
 physical drive in a program, as OF_LINK will NOT tell you when to switch
 disks.

Examples:

 of_link /d1@ p=/t2

 of_link /d0@ /d1@

 of_link /d0@ /d2@ /h0/flex/virtual08 p=/p

 OF_LINK

(c) 1988 by Sardis Technologies Page 29

CONTENTS OF THE OF_LINK DISKETTE (OS-9 format)
===

 CMDS contains OS-9 programs:

 cmdgen3 Macro command generator
 dpoke Patch a file directly on disk
 newcrc Update header parity and CRC bytes of modules in a file
 OF_Link Multi-purpose program to boot FLEX/SK*DOS, provides
 device driver linkage, contains OF-MON, etc.

 VIRTUAL is a virtual FLEX volume containing these FLEX commands:

 BINCPY.CMD binary file copy
 BLIST.CMD buffered list command
 CHECKSUM.CMD calculate checksum on file
 DSKSET.CMD set disk parameters
 DSKSHOW.CMD display disk parameters
 LINK.CMD link the operating system file for booting
 LOADO.CMD load a binary file with offset
 MEMEND.OVR overlay to change MEMEND to $BBFF (append to FLEX.COR)
 P.CMD print redirection command
 PRINT.SYS dummy printer driver file
 PFORMAT.CMD format a physical disk
 VFORMAT.CMD format a virtual disk
 XCOPY.CMD copies files from FLEX to OS-9, and vice versa

OF_LINK

Page 30 (c) 1988 by Sardis Technologies

GENERAL INFORMATION FOR ADAPTING SOFTWARE PACKAGES TO RUN UNDER OF_LINK
===

Programs that use only standard documented FLEX calls should run under
OF_LINK without any changes whatsoever. But programs that bypass FLEX and
access the hardware directly for such purposes as getting a character from
the keyboard without echoing it to the screen, will need modifications.

Some software packages, in their "installation" mode, ask you if you have
a standard SS-50 bus configuration (a 6850 ACIA addressed at $E004). If you
say "no", they will ask for the address of one or more routines, mentioned
below. For example, for input-character-no-echo, respond to the package's
prompt with $D3E4.

Other packages require you to write a small I/O driver. The code for input-
character-no-echo would be as simple as:

 INCHNE JMP [$D3E5]

The following are standard FLEX address vectors:
1) $D3E5-$D3E6 contains the address of a routine that inputs a character
 from the console without echoing it. Upon return the character is in
 Register A. OF_LINK also provides a JMP opcode ($7E) at location $D3E4
 so the code above could have been written using a direct jump instead of
 an indirect jump: INCHNE JMP $D3E4
2) $D3F7-$D3F8 contains the address of a routine that checks the console
 port to see if a character has been keyed on the keyboard. It returns
 condition code NE if a character has been keyed and is waiting to be read,
 or EQ if none is waiting.
3) $D3F9-$D3FA contains the address of a routine that outputs a character to
 the console. Before calling the routine, load the character into
 Register A.

The guidelines given above should be enough let you install most programs
to run under OF_LINK. Some software packages are trickier, and a few of
these have more detailed installation instructions given below. If you find
other programs, not included below, where the general information given above
isn't enough to get the program running, let us know. If you discover the
patches needed to get such a program running under OF_LINK, we would
appreciate you sending them to us so we can update this manual.

Some of the programs we would like to hear about are: Crunch COBOL,
Rapier (chess), PL/9, XDMS, Lucidata Pascal, FORTHBUILDER, FF9 (public
domain FORTH from Wilson Frederici), TSC's XBASIC, etc.

 OF_LINK

(c) 1988 by Sardis Technologies Page 31

ADAPTING THE "DYNACALC" SPREADSHEET TO OF_LINK
===

During the running of the INSTALL command there are three prompts that need
special consideration:
a) DOES YOUR COMPUTER USE S-BUG (OR USE SAME ACIA ADDRESS)?
 Respond with "N".
b) DO YOU -
 1) HAVE TERMINAL ADDRESS
 2) HAVE ADDRESS OF ADDRESS OF TERMINAL
 3) HAVE OWN INPUT CHARAC ROUTINE
 4) QUIT
 Respond with "3".
c) YOUR ADDRESS? D3E4

ADAPTING THE "SUPER-SLEUTH" DISASSEMBLER TO OF_LINK
===

Change the extension on the CSSINCHR.SWT file to .TXT, then modify it to look
like this:

 * INPUT CHARACTER
 INCHRT STX BADDR
 JSR $D3E4
 LDX BADDR
 RTS

Then follow the rest of the manual's instructions to generate an executable
program.

ADAPTING THE "SCREDITOR III" WORD PROCESSOR TO OF_LINK
===

Answer the following prompts in the CONGEN command as indicated:
a) "SYSTEM EXIT VECTOR" - display the contents of $D3F3-$D3F4 and key in
 that address. Note -- after using Screditor's EX command, use OF-MON's
 "F U hhhh" command to return to Screditor.
b) "SCREEN TYPE" - use "2" for external character display routine
c) "SCREEN DRIVERS COMPATIBLE" - answer with "Y"
d) "ADDRESS OF SCREEN OUTPUT" - display the contents of $D3F9-$D3FA and key
 in that address.
e) "ADDRESS OF SCREEN INIT" - display the contents of $D3F5-$D3F6 and key in
 that address.

Answer the following prompts in the KEYGEN command as indicated:
a) "KEYBOARD TYPE" - use "5" for external routine using NE
b) "META KEYS" - answer with "N"
c) "ADDRESS OF KEYBOARD CHECK" - display the contents of $D3F7-$D3F8 and key
 in that address.
d) "ADDRESS OF GET CHARACTER" - key in address "$D3E4"
e) "MUST ECHO BE CONTROLLED" - answer with "N"

OF_LINK

Page 32 (c) 1988 by Sardis Technologies

f) "KEYBOARD DELAY CONSTANT" - experiment with values between 10 and 30.

Answer the following prompts in the PRTGEN command as indicated:
a) "PRINTER OUTPUT ADDRESS" - respond with "$CCE4"
b) "PRINTER INIT ADDRESS" - respond with "$CCC0"
c) "PRINTER LEFT MARGIN" - respond with 000 or whatever value you require
d) "NULLS AFTER CR-LF (NEW LINE)" - respond with 000 (use OS-9's XMODE
 instead to change the "null" value of the printer descriptor, if
 necessary)

ADAPTING THE "STYLOGRAPH" WORD PROCESSOR TO OF_LINK
===

Carefully study the section towards the end of the Stylograph manual entitled
"Using Stylograph with the FLEX disk operating system". Follow its
instructions on modifying the STYIO file. Use the following code as a guide:

 ORG IOBEG

 *CONSTANTS
 RAMLIM FDB $FFFF HIGHEST RAM USED IF LOWER THAN MEMEND
 SIMFLG FCB 1 NON-ZERO IF NO INTERRUPTS
 PRTFLG FCB 1 ZERO IF OUTPUT THROUGH FLEX, ELSE PRTOUT
 INTVEC FDB 0 INTERRUPT VECTOR LOCATION

 INCHEK EQU $D3F7 FLEX - check status of keyboard port
 INCHN EQU $D3E5 FLEX - input character from keyboard, no echo
 OUTCH EQU $D3F9 FLEX - output character to console screen

 ORG IOBEG+$10 SET BRANCH TABLE
 *BRANCH TABLE
 INTON BRA JINTON
 INTOFF BRA JINTOFF
 PINIT BRA JPINIT
 PCHECK BRA JPCHECK
 GETCH BRA JGETCH
 PRTOUT EQU *

 *OUTPUT CHARACTER
 JMP [OUTCH]

 *GET A CHARACTER
 JGETCH JMP [INCHN]

 *CHECK FOR CHARACTER AT INPUT
 JPCHECK JMP [INCHEK]

 * ENABLE INTERRUPTS
 JINTON RTS

 * DISABLE INTERRUPTS
 JINTOFF EQU JINTON

 OF_LINK

(c) 1988 by Sardis Technologies Page 33

 *INITIALIZE PORT
 JPINIT PSHS A flush FIFO
 JP10 JSR [INCHEK]
 BEQ JP90
 JSR [INCHN]
 BRA JP10
 JP90 PULS A,PC

ADAPTING THE "RMS" DATA MANAGEMENT PACKAGE TO OF_LINK
===

1) Load RMS.CMD into memory with the FLEX "GET" command, then use the "MON"
 command to exit FLEX and enter OF-MON.
2) Look at the following locations and verify that they contain the values in
 the "OLD" column:

 address old new description
 ------- --- ---------- --
 0022 E0 don't care address of console port MSB
 0023 04 " " " " " " LSB

 1B87 34 6E routine to input character from console port
 1B88 10 9F
 1B89 9E D3
 1B8A 22 E5
 1B94 35 don't care
 1B95 10 " "
 1B96 39 " "

 1B97 34 6E routine to output character to console port
 1B98 14 9F
 1B99 9E D3
 1B9A 22 F9
 1BA3 35 don't care
 1BA4 14 " "
 1BA5 39 " "

3) If the "old" values agree, patch RMS with the "new" values at the
 locations indicated.
4) If the "old" values don't agree, you have a different version of RMS
 than the one we tested. Use OF-MON's "S" command to search for the
 same code residing in a different location.

OF_LINK

Page 34 (c) 1988 by Sardis Technologies

FF9 (FORTH-83 from Wilson Frederici)
===

1) If you want to use a FLEX virtual disk for a FORTH disk, you will need to
 change 3 of the 4 constants involved in the conversion of disk block
 numbers to sector locations:
 TRK/DRV = 1 to 127 (was 35)
 SEC/TRK = 64 (was 10)
 BASETRK = 1 (was 0)

 The TRK/DRV (tracks per drive) value depends on the size of the virtual
 volume.

 OF_LINK

(c) 1988 by Sardis Technologies Page 35

INTRODUCTION TO THE OF-MON MONITOR PROGRAM
===

OF-MON is entered by exitting FLEX or SK*DOS with the "MON" command.

OF-MON, with its lack of breakpoints and register commands, is not intended
to be a full fledged debugging monitor -- rather, its main purpose is to
allow contents of memory to be examined and changed. If you need powerful
debugging capabilities, we highly recommend TSC's excellent "6809 DEBUG"
package available from some of the suppliers listed elsewhere in this manual.

OF-MON Monitor Commands
===

Commands consist of a one character code followed by 0 - 3 arguments. Some
arguments are one or two alphabetic characters, but most are entered in
hexadecimal, either 2 or 4 digits each. Keying any non-hex digit (such as a
carriage return) when a hexadecimal value is required, aborts the command.
Here is a summary of the available commands:

 M Memory examine/change byte by byte
 F return to FLEX
 O return to OS-9
 J Jump to subroutine or program *
 E Examine large blocks of memory *
 S Search for byte *
 B move Block of memory *
 A fill Area of memory *
 ? display menu of OF-MON commands
 (* not implemented yet)

OF_LINK

Page 36 (c) 1988 by Sardis Technologies

"A <begin address> <end address> <value>" -- Fill Area of Memory

The memory fill command allows the user to fill a contiguous area of memory,
from the begin address to the end address, inclusive, with the 1 byte data
value entered. Note -- be careful not to overwrite FLEX or OF_LINK; the
destination area should normally avoid $C000 - $FFFF.

Example:
=A 2000 7FFF 3F

"B <source-begin address> <source-end address> <destination-begin address>"
-- Move Block of Memory (ie. duplicate it)

The move block command copies the contents of the contiguous area of memory,
source-begin to source-end addresses, inclusive, to a same-sized area
starting at the destination-begin address. If the source and destination
blocks overlap, the results might not be what was desired. If no overlapping
occurs, the contents in the source area remain unchanged. Note -- be careful
not to overwrite FLEX or OF_LINK; the destination area should normally avoid
$C000 - $FFFF.

Example:
=B DE00 DFFF 1000

"E <begin address> <end address>" -- Examine Block of Memory

The examine memory command displays the contents of memory from the begin to
the end address, inclusive. The contents are displayed in both hexadecimal
and ASCII. Each line shows 16 bytes and is aligned on an even 16 byte
boundary (ie. the first displayed byte of each line has an address ending
with "0"). Non-printable characters ($00-$1F, $7F) are shown as dots in the
ASCII display. A sample display looks like this:

=E FE7F FE96
FE70 250B8146 22078037 39326132 61433953 %..F"..792a2aC9S
FE80 542D4D4F 4E20312E 30202863 29203139 T-MON 1.0 (c) 19
FE90 38342044 4357043D 043F3F04 0D0A0000 84 DCW.=.??.....

The display can be temporarily halted at any time by pressing the "Escape"
key on the keyboard (control-BREAK on the CoCo 3). At this point, pressing
the "Return" key will abort the command; typing any other character resumes
the display.

"F W" -- Return to FLEX Warmstart

The "F W" command is used to return control to FLEX (or SK*DOS) via its
Warmstart address ($CD03) after having exitted FLEX by using the "MON"
command.

 OF_LINK

(c) 1988 by Sardis Technologies Page 37

"F U <address>" - Return to FLEX environment, but to user program

The "F U hhhh" command is used to jump to a user program running in the FLEX
(or SK*DOS) environment. That is, the program uses FLEX routines and/or
will eventually return control to FLEX's "Warmstart" address ($CD03).

A typical use for this command is where you want to modify a few bytes of a
program before executing it. Use FLEX's "GET" command to load the program
from disk, use "MON" to exit to OF-MON, use the "M" command to make the
desired patches, then use the "F U" command to jump to the entry point of the
program. If the documentation of the program does not tell you the location
of its entry point, you will first have to run TSC's "MAP" command to find
out.

Example:
=F U C100

"J <address>" -- Jump to subroutine or program

The jump to subroutine (or program) command lets the user execute a routine
beginning at the specified address.
Return to OF-MON should be via an "RTS" instruction at the end of the
subroutine or program, not a jump.

Note -- do NOT use this to return to FLEX (or SK*DOS), or to execute a
program that will use FLEX routines or will return to FLEX warmstart ($CD03).
Use the "F W" or "F U" commands instead.

Example:
=J 0100

"M <address>" -- Memory Examine/Change

The memory examine/change command lets the user look at and modify the
contents of memory, one byte at a time, beginning with the specified address.
Each byte is shown on a separate line, with its address, its current contents
in hexadecimal, and its current contents in ASCII (if printable). At this
point you can key one of several sub-commands:

 a) typing a valid 2 digit hexadecimal value changes that memory location to
 the new value (a "?" is displayed if not successfully changed because of
 bad RAM or because it was ROM, or it was changed OK but cannot be read
 back because it was a write-only register in an I/O chip), then advances
 to display the next location. Note -- if the address was in the $FF00-
 $FFFF range, the command is exitted after the one location was changed.

 b) typing an apostrophe followed by one ASCII character stores that ASCII
 character into the memory location.

 c) typing a comma or space advances to the next location without changing
 the current location

OF_LINK

Page 38 (c) 1988 by Sardis Technologies

 d) typing a backspace or minus sign or up arrow displays the previous
 location instead of the next one -- the current location is not changed

 e) typing a period or carriage return exits the command -- the current
 location is not changed

 f) if you type anything else you will get a question mark, and the current
 location will be redisplayed.

Entire machine language programs can be entered this way. But be especially
careful when changing any bytes in areas occupied by FLEX or OF_LINK or OS-9
($C000 - $FFFF).

"O" -- return to OS-9

Exit OF-MON to return to OS-9. This will terminate the current session of
FLEX/SK*DOS. If any FLEX logical drives are using virtual disks, the
corresponding OS-9 files will be closed. Using OF-MON's "O" command is the
"proper" way to return to OS-9 from FLEX.

"S <begin address> <end address> <search value>" -- Search for byte

The search command finds all occurrences of the specified 1 byte data pattern
between the specified begin and end addresses, inclusive. Each "hit" is
displayed on a separate line, with its address, the two bytes before the
search value, the search value, and the two bytes after. Note that the
address is that of the middle byte. A sample display looks like this:

=S C100 C12F BD
C114 0000 BD CD24
C11A C840 BD CD2D

The display can be temporarily halted at any time by pressing the "Escape"
key on the keyboard (control-BREAK on the CoCo 3). At this point, pressing
the "Return" key will abort the command; typing any other character resumes
the display.

 OF_LINK

(c) 1988 by Sardis Technologies Page 39

SOURCES OF SOFTWARE FOR FLEX AND SK*DOS
===

- Southeast Media / '68' Micro Journal
 5900 Cassandra Smith Rd.
 Hixson, Tennessee 37343
 U.S.A.
 (615) 842-4600

 Southeast Media recently claimed to be the largest 68XX software
 distributor in the world, with over 300 programs available for a wide
 variety of systems. Current issues of "'68' Micro Journal" magazine,
 published by a different division of the same company (and same address as
 Southeast Media) contain a 7 page mini-catalogue of software, much of it
 available for FLEX. Besides their software sales, this is one magazine you
 may wish to subscribe to, as it is probably the only one left that even
 mentions FLEX or SK*DOS. Several dozen disks of user submitted programs
 that have been published in previous issues of '68' Micro Journal are also
 available for $16.95 ($US) each -- a complete listing appears in each
 issue.

- Frank Hogg Laboratory, Inc.
 770 James Street
 Syracuse, NY 13203
 U.S.A.
 (315) 474-7856

 Frank Hogg Labs have also claimed at times to be the largest 68XX(x)
 software distributor. They used to support FLEX extensively, and their
 "Serious Users Software Catalog" was chock full of assemblers, compilers,
 disassemblers, debuggers, editors, word processors, spelling checkers, data
 base managers, spread sheets, accounting packages, etc. Their emphasis has
 now shifted to OS-9, but you may want to still send for their free
 newsletter and catalog.

- AAA Chicago Computer Center
 120 Chestnut Lane
 Wheeling, Illinois 60090
 U.S.A.
 (312) 459-0450 (until Nov. '88)
 (708) 459-0450 (after Nov. '88)

 AAA is also mostly a dealer for other companies' products, both hardware
 and software, but have in the past also offered a few of their own software
 packages. Ask them for a catalog.

- Star-K Software Systems Corp.
 Box 209
 Mt. Kisco, NY 10549
 U.S.A.
 (914) 241-0287

 This company wrote SK*DOS (a FLEX "clone"), and also offers some other
 software to run under FLEX or SK*DOS.

OF_LINK

Page 40 (c) 1988 by Sardis Technologies

- Computer Systems Consultants, Inc.
 1454 Latta Lane
 Conyers, GA 30207
 U.S.A.
 (404) 483-4570 or 1717

 Various programs, such as the Super-Sleuth disassembler, cross-assemblers
 to generate code for many other microprocessors, debugging simulators,
 assembler code translators, modem telecommunications program, etc. See
 their ad in '68' Micro Journal, or send for a catalog.

- Wilson Frederici
 1208 NW Grant
 Corvallis, OR 97330
 U.S.A.

 An excellent public domain FORTH-83 interpreter called FF9 is available
 from Wilson for next to free -- just send him two blank 5.25" disks and
 a prepaid mailer!!

- Other suppliers of FLEX software also advertise in '68' Micro Journal.

- Another often overlooked potential source of inexpensive FLEX software is
 those people who used to run FLEX but have since switched to other
 operating systems and haven't found time to run FLEX any more. There must
 be a lot of good used software packages gathering dust in peoples' closets.
 Try the classified ad section in magazines such as '68' Micro Journal and
 MOTD (the OS-9 User Group newsletter), or leave messages on computer
 bulletin board systems.

 OF_LINK

(c) 1988 by Sardis Technologies Page 41

SYSTEM MEMORY MAP
===

0000 - BFFF * User memory
C000 - D36F * Various components of FLEX ($C71C-$C83F not used)
D370 - D3E1 (not used)
D3E2 - D3E4 console and timer I/O values
D3E4 - D3FC * Console and timer address vectors
D3FD - DDFF * Various components of FLEX
DE00 - DE1D * Disk driver jump table
DE1E - DF51 Disk driver routines
DF52 - DFFF (not used)
E000 - FDFF OF_Link (an OS-9 module)
FE00 - FEFF OS-9 vector page
FF00 - FFFF I/O, GIME registers, etc.

 * These areas are standard FLEX -- refer to the FLEX User's
 Manual and FLEX Programmer's Manual for more details.

....

